Skip to main content
Log in

Random Walks in the Hyperbolic Plane and the Minkowski Question Mark Function

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Consider \(G=SL_2(\mathbb {Z})/\{\pm I\}\) acting on the complex upper half plane H by \(h_M(z)=\frac{az\,+\,b}{cz\,+\,d}\) for \(M \in G\). Let \(D=\{z \in H: |z|\ge 1, |\mathfrak {R}(z)|\le 1/2\}\). We consider the set \({\mathcal {E}} \subset G\) with the nine elements M, different from the identity, such that \(\mathrm{tr\,}(MM^T)\le 3\). We equip the tiling of H defined by \(\mathbb {D}=\{h_M(D){:}\, M \in G\}\) with a graph structure where the neighbours are defined by \(h_M(D) \cap h_{M'}(D) \ne \emptyset \), equivalently \(M^{-1}M' \in {\mathcal {E}}\). The present paper studies several Markov chains related to the above structure. We show that the simple random walk on the above graph converges a.s. to a point X of the real line with the same distribution of \(S_2 W^{S_1}\), where \(S_1,S_2,W\) are independent with \(\Pr (S_i=\pm 1)=1/2\) and where W is valued in (0, 1) with distribution \(\Pr (W<w)=\mathbf ? (w)\). Here \(\mathbf ? \) is the Minkowski function. If \(K_1, K_2, \ldots \) are i.i.d with distribution \(\Pr (K_i=n)= 1/2^n\) for \(n=1,2,\ldots \), then \(W= \frac{1}{K_1+\frac{1}{K_2+\ldots }}\): this known result (Isola in Appl Math 5:1067–1090, 2014) is derived again here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bougerol, P., Lacroix, J.: Products of Random Matrices with Applications to Schrodinger Operators. Birkhauser, Boston (1985)

    Book  Google Scholar 

  2. Benoist, Y., Quint, J.F.: Random Walks on Reductive Groups. Springer, Berlin (2016)

    Book  Google Scholar 

  3. Chamayou, J.-F., Letac, G.: Explicit stationary distributions for composition of random functions and products of random matrices. J. Theor. Probab. 4, 3–36 (1991)

    Article  MathSciNet  Google Scholar 

  4. Chassaing, P., Letac, G., Mora, M.: ’Brocot sequences and random walks in \(SL(2,{\mathbb{R}})\). Springer Lect. Notes Prob. Groups IX 1084, 37–50 (1984)

    MATH  Google Scholar 

  5. Denjoy, A.: Sur une fonction réelle de Minkowski. J. Math. Pures Appl. Sér. 17 IX, 105–151 (1938)

    MATH  Google Scholar 

  6. Isola, S.: Continued fractions and dynamics. Appl. Math. 5, 1067–1090 (2014)

    Article  Google Scholar 

  7. Jordan, T., Sahlsten, T.: Fourier transforms of Gibbs measures for the Gauss map. Math. Ann. 364, 983–1023 (2016)

    Article  MathSciNet  Google Scholar 

  8. Minkowski, H.: Zur geometrie der Zahlen. Verhandlungen des III internationalen Mathematiker-Kongress in Heidelberg, Berlin (1904)

  9. Olds, C.D.: Continued Fractions. The Mathematical Association of America, Washington, DC (1963)

    MATH  Google Scholar 

  10. Salem, R.: On some singular monotonic functions which are strictly increasing. Trans. Am. Math. Soc. 53, 427–439 (1943)

    Article  MathSciNet  Google Scholar 

  11. Serre, J.-P.: Cours d’arithmétique’, deuxième édition revue et corrigée. Presses Univ. de France, Paris (1977)

    Google Scholar 

  12. Viader, P., Paradis, J., Bibiloni, L.: A new light on Minkowski’s ?(x) function. J. Number Theory 73, 212–227 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to an anonymous referee for useful comments and references. G.L. thanks Sapienza Università di Roma for its generous support during the preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérard Letac.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Letac, G., Piccioni, M. Random Walks in the Hyperbolic Plane and the Minkowski Question Mark Function. J Theor Probab 31, 2376–2389 (2018). https://doi.org/10.1007/s10959-017-0783-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-017-0783-z

Keywords

Mathematics Subject Classification (2010)

Navigation