Skip to main content
Log in

Genetic and epigenetic Muller’s ratchet as a mechanism of frailty and morbidity during aging: a demographic genetic model

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Mutation accumulation has been proposed as a cause of senescence. During this process, age-related genetic and epigenetic mutations steadily accumulate. Cascading deleterious effects of mutations might initiate a steady “accumulation of deficits” in cells, despite the existence of repair mechanisms, leading to cellular senescence and functional decline of tissues and organs, which ultimately manifest as frailty and disease. Here, we investigate several of these aspects in differentiating cell populations through modeling and simulation using the Moran birth–death (demographic) process, under several scenarios of mutation accumulation. Deleterious mutations seem to rapidly accumulate particularly early in the course of life, during which the rate of cell division is high, thereby exerting a greater effect on subsequent cellular senescence. Our results are compatible with the principle of the Muller’s ratchet taking place in asexually reproducing organisms. The ratchet speed in a given tissue depends on the size of the cell population, mutation rate and the impact of such mutations on cell phenotypes. It varies substantially among cells in different tissues and organs due to heterogeneity in relation to cell and organ-specific demographic features. Ratchet accelerates particularly after middle age, resulting in a synergistic fitness decay at the level of cell populations. We extend Fisher’s average excess concept and rank order scale to interpret differential phenotypic effects of the increase of the mutation load among cell populations within a given tissue. We postulate that classical evolutionary genetic models can explain, at least in part, the origins of frailty, subclinical conditions, morbidity and the health consequences of senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allison B (2008) Divergence of mechanistic pathways mediating aging and developmental programming of cardiovascular diseases. FASEB J 30:1968–1975

    Article  CAS  Google Scholar 

  • Ally D, Ritland K, Otto SP (2010) Aging in a long-lived clonal tree. PLoS Biol 8:q1000454

    Article  CAS  Google Scholar 

  • Bae T, Tomasini L, Mariani J et al (2018) Different mutational rates and mechanisms in human cells at pregastrulation and neurogenesis. Science 359(550):555

    Google Scholar 

  • Barthes J, Özçelik H, Hindié M et al (2014) Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances. In: BioMed Res Int

  • Behjati S, Huch M, van Boxtel R et al (2014) Genome sequencing of normal cells reveals developmental lineages and mutational processes. Nature 513:422–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianconi E, Piovesan A, Facchin F et al (2013) An estimation of the number of cells in the human body. Ann Hum Biol 40:463–471

    Article  PubMed  Google Scholar 

  • Birchler JA, Veitia RA (2012) Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. Proc Natl Acad Sci 109:14646–14653

    Article  Google Scholar 

  • Bravo-San Pedro JM, Kroemer G, Galluzzi L (2017) Autophagy and mitophagy in cardiovascular disease. Circ Res 120:1812–1824

    Article  CAS  PubMed  Google Scholar 

  • Brenner S (2010) Sequences and consequences. Philos Trans R Soc B Biol Sci 365:207–212

    Article  Google Scholar 

  • Buchman TG (2002) The community of the self. Nature 420:246–251

    Article  CAS  PubMed  Google Scholar 

  • Buja A, Volfovsky N, Krieger AM, Lord C, Lash AE, Wigler M, Iossifov I (2018) Damaging de novo mutations diminish motor skills in children on the autism spectrum. Proc Nat Acad Sci 115(8):E1859–E1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnet M (1965) Somatic mutation and chronic disease. Br Med J 1:338–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buss LW (1988) The evolution of individuality, 1st edn. Princeton University Press, Princeton

    Book  Google Scholar 

  • Carrero JJ, Johansen KL, Lindholm B et al (2016) Screening for muscle wasting and dysfunction in patients with chronic kidney disease. Kidney Int 90:53–66

    Article  PubMed  Google Scholar 

  • Celiker H, Gore J (2013) Cellular cooperation: insights from microbes. Trends Cell Biol 23:9–15

    Article  CAS  PubMed  Google Scholar 

  • Cesari M, Vellas B, Gambassi G (2013) The stress of aging. Exp Gerontol 48:451–456

    Article  PubMed  Google Scholar 

  • Crow JF (1970) Genetic loads and the cost of natural selection. Mathematical topics in population genetics. Springer, New York, pp 128–177

    Chapter  Google Scholar 

  • Crow JF (1986) Basic concepts in population, quantitative, and evolutionary genetics. Basic Concepts Popul Quant Evol Genet. Freeman, San Francisco

    Google Scholar 

  • Crow JF (1989) Some possibilities for measuring selection intensities in man. Hum Biol 61:763–775

    CAS  PubMed  Google Scholar 

  • Crow JF (1993) Mutation, mean fitness, and genetic load. Oxford Surv Evol Biol 9:3–42

    Google Scholar 

  • Crow JF (2000) The origins, patterns and implications of human spontaneous mutation. Nat Rev Genet 1:40–47

    Article  CAS  PubMed  Google Scholar 

  • Cruickshanks HA, McBryan T, Nelson DM et al (2013) Senescent cells harbour features of the cancer epigenome. Nat Cell Biol 15:1495–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelman M, Seplaki CL, Varadhan R (2017) A quiescent phase in human mortality? Exploring the ages of least vulnerability. Demography 54:1097–1118

    Article  PubMed  Google Scholar 

  • Engels EA, Wu X, Gu J et al (2007) Systematic evaluation of genetic variants in the inflammation pathway and risk of lung cancer. Cancer Res 67:6520–6527

    Article  CAS  PubMed  Google Scholar 

  • Ewens WJ (2004) Mathematical population genetics 1: theoretical introduction, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Ezawa K, Innan H (2013) Theoretical framework of population genetics with somatic mutations taken into account: application to copy number variations in humans. Heredity 111:364–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farr JN, Xu M, Weivoda MM et al (2017) Targeting cellular senescence prevents age-related bone loss in mice. Nat Med 23:1072–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field AE, Robertson NA, Wang T et al (2018) DNA methylation clocks in aging: categories, causes, and consequences. Mol Cell 71:882–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finch C (1990) Longevity, senescence, and the genome. University of Chicago Press, Chicago

    Google Scholar 

  • Fisher RA (1941) Average excess and average effect of a gene substitution. Ann Eugen 11:53–63

    Article  Google Scholar 

  • Forsberg LA, Rasi C, Malmqvist N et al (2014) Mosaic loss of chromosome Y in peripheral blood is associated with shorter survival and higher risk of cancer. Nature Genetics 46(6):624–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraga MF, Ballestar E, Paz MF et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102:10604–10609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank SA (2010) Somatic evolutionary genomics: mutations during development cause highly variable genetic mosaicism with risk of cancer and neurodegeneration. Proc Natl Acad Sci 107:1725–1730

    Article  PubMed  PubMed Central  Google Scholar 

  • Frank SA (2014) Somatic mosaicism and disease. Curr Biol 24:R577–R581

    Article  CAS  PubMed  Google Scholar 

  • Govindaraju DR (2014) Opportunity for selection in human health. In: Friedmann T, Dunlap JC, Goodwin SF (eds) Advances in genetics. Academic, Oxford, pp 1–70

    Google Scholar 

  • Govindaraju DR (2015) Evolutionary genetic bases of longevity and senescence. Adv Exp Med Biol 847:1–44

    Article  CAS  PubMed  Google Scholar 

  • Haldane JBS (1937) The effect of variation of fitness. Am Nat 71:337–349

    Article  Google Scholar 

  • Hall DW, Wayne ML (2013) Ohno’s “peril of hemizygosity” revisited: gene loss, dosage compensation, and mutation. Genome Biol Evol 5:1–15

    Article  CAS  PubMed  Google Scholar 

  • Hartl DL, Clark AG (2006) Principles of population genetics, 4th edn. Sinauer Associates is an imprint of Oxford University Press, Sunderland

    Google Scholar 

  • Haubold K, Herrmann H, Langer SJ et al (2003) Acute effects of desmin mutations on cytoskeletal and cellular integrity in cardiac myocytes. Cell Motil 54:105–121

    Article  CAS  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  CAS  PubMed  Google Scholar 

  • Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14:3156

    Article  Google Scholar 

  • Horvath S, Raj K (2018) DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet 19:371–384

    Article  CAS  PubMed  Google Scholar 

  • Jaenisch R, Young R (2008) Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132:567–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaiswal S et al (2014) Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371:2488–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamuar SS, Lam A-TN, Kircher M et al (2014) Somatic mutations in cerebral cortical malformations. N Engl J Med 371:733–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kacser H, Burns JA (1981) The molecular basis of dominance. Genetics 97:639–666

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkland JL, Tchkonia T (2017) Cellular senescence: a translational perspective. EBioMedicine 21:21–28

    Article  PubMed  PubMed Central  Google Scholar 

  • Klein BEK, Klein R, Knudtson MD, Lee KE (2005) Frailty, morbidity and survival. Arch Gerontol Geriatr 41:141–149

    Article  PubMed  Google Scholar 

  • Klingenberg CP (2008) Morphological integration and developmental modularity. Annu Rev Ecol Evol Syst 39:115–132

    Article  Google Scholar 

  • Kondrashov AS (1995) Contamination of the genome by very slightly deleterious mutations: why have we not died 100 times over? J Theor Biol 175:583–594

    Article  CAS  PubMed  Google Scholar 

  • Kraemer SA, Böndel KB, Ness RW et al (2017) Fitness change in relation to mutation number in spontaneous mutation accumulation lines of Chlamydomonas reinhardtii. Evolution 71:2918–2929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeBrasseur NK, Tchkonia T, Kirkland JL (2015) Cellular senescence and the biology of aging, disease, and frailty. Frailty Pathophysiol Phenotype Patient Care 83:11–18

    Article  Google Scholar 

  • Lee JH (2016) Somatic mutations in disorders with disrupted brain connectivity. Exp Mol Med 48:e239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee-Six H, Øbro NF, Shepherd MS et al (2018) Population dynamics of normal human blood inferred from somatic mutations. Nature 561:473–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levitis DA (2010) Before senescence: the evolutionary demography of ontogenesis. Proc R Soc Lond B Biol Sci 278:801–809

    Article  Google Scholar 

  • Lewontin RC (1970) The units of selection. Annu Rev Ecol Syst 1:1–18

    Article  Google Scholar 

  • Lodato MA, Rodin RE, Bohrson CL et al (2018) Aging and neurodegeneration are associated with increased mutations in single human neurons. Science 359:555–559

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Bürger R, Butcher D, Gabriel W (1993) The mutational meltdown in asexual populations. J Hered 84:339–344

    Article  CAS  PubMed  Google Scholar 

  • Lynch M (2010) Rate, molecular spectrum, and consequences of human mutation. Proc Nat Acad Sci 107(3):961–968

    Article  PubMed  PubMed Central  Google Scholar 

  • MacNee W, Rabinovich RA, Choudhury G (2014) Ageing and the border between health and disease. Eur Respir J 44(5):1332–1352

    Article  PubMed  Google Scholar 

  • Medawar PB (1952) An unsolved problem of biology. Published for the College by H.K, Lewis

    Google Scholar 

  • Medvedev ZA (1990) An attempt at a rational classification of theories of ageing. Biol Rev Camb Philos Soc 65:375–398

    Article  CAS  PubMed  Google Scholar 

  • Meunier D, Achard S, Morcom A et al (2008) Age-related changes in modular organization of human brain functional networks. Neuroimage 44:715–723

    Article  PubMed  Google Scholar 

  • Mitnitsky A, Rockwood K (2016) The rate of aging: the rate of deficit accumulation does not change over the adult life span. Biogerontology 17:199–204

    Article  Google Scholar 

  • Moore KL, Persaud TVN, Torchia MG (2011) The developing human: clinically oriented embryology with student consult online access, 9th edn. Saunders, Philadelphia

    Google Scholar 

  • Moran PAP (1962) Statistical processes of evolutionary theory. Oxford University Press, Oxford

    Google Scholar 

  • Morelli KH, Seburn KL, Schroeder DG et al (2017) Severity of demyelinating and axonal neuropathy mouse models is modified by genes affecting structure and function of peripheral nodes. Cell Rep 18:3178–3191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller HJ (1950) Our load of mutations. Am J Hum Genet 2:111–176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muñoz-Espín D, Serrano M (2014) Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15:482–496

    Article  CAS  PubMed  Google Scholar 

  • Neher RA, Shraiman BI (2012) Fluctuations of fitness distributions and the rate of Muller’s ratchet. Genetics 191:1283–1293

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Huallachain M, Karczewski KJ, Weissman SM et al (2012) Extensive genetic variation in somatic human tissues. Proc Natl Acad Sci 109:18018–18023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta T (1973) Slightly deleterious mutant substitutions in evolution. Nature 246:96–98

    Article  CAS  PubMed  Google Scholar 

  • Park JS, Lee J, Jung ES et al (2019) Brain somatic mutations observed in Alzheimer’s disease associated with aging and dysregulation of tau phosphorylation. Nat Commun 10:3090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poduri A, Evrony GD, Cai X, Walsh CA (2013) Somatic mutation, genomic variation, and neurological disease. Science 341:1237758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poon A, Otto SP (2000) Compensating for our load of mutations: freezing the meltdown of small populations. Evol Int J Org Evol 54:1467–1479

    Article  CAS  Google Scholar 

  • Rattan SIS (2018) Biogerontology: research status, challenges and opportunities. Acta Bio Med Atenei Parm 89:291–301

    CAS  Google Scholar 

  • Ricke RM, van Deursen JM (2013) Aneuploidy in health, disease, and aging. J Cell Biol 201:11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizvi S, Raza ST, Mahdi F (2014) Telomere length variations in aging and age-related diseases. Curr Aging Sci 7(3):161–167

    Article  CAS  PubMed  Google Scholar 

  • Rockwood K, Bergman H (2012) FRAILTY: a report from the 3rd joint workshop of IAGG/WHO/SFGG, Athens, January 2012. Can Geriatr J CGJ 15:31–36

    PubMed  Google Scholar 

  • Rockwood K, Mitnitski A (2012) How might deficit accumulation give rise to frailty? J Aging Frailty 1:8–12

    CAS  Google Scholar 

  • Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192:547–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubinsztein DC, Mariño G, Kroemer G (2011) Autophagy and aging. Cell 146:682–695

    Article  CAS  PubMed  Google Scholar 

  • Santilli V, Bernetti A, Mangone M, Paoloni M (2014) Clinical definition of sarcopenia. Clin Cases Miner Bone Metabol 11:177

    Google Scholar 

  • Sauver JLS et al (2015) Risk of developing multimorbidity across all ages in an historical cohort study: differences by sex and ethnicity. BMJ Open 5:e006413

    Article  Google Scholar 

  • Schaffer HE (1970) Survival of mutant genes as a branching process. In: Kojima K (ed) Mathematical topics in population genetics. Springer, Berlin, pp 317–336

    Chapter  Google Scholar 

  • Simmons MJ, Crow JF (1977) Mutations affecting fitness in drosophila populations. Annu Rev Genet 11:49–78

    Article  CAS  PubMed  Google Scholar 

  • Szilard L (1959) On the nature of the aging process. Proc Natl Acad Sci USA 45:30–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Templeton AR (2006) Population genetics and microevolutionary theory. Wiley, Oxford

    Book  Google Scholar 

  • Teschendorff AE, West J, Beck S (2013) Age-associated epigenetic drift: implications, and a case of epigenetic thrift? Hum Mol Genet 22:R7–R15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomaru U, Takahashi S, Ishizu A et al (2012) Decreased proteasomal activity causes age-related phenotypes and promotes the development of metabolic abnormalities. Am J Pathol 180:963–972

    Article  CAS  PubMed  Google Scholar 

  • Turaljik S, Sottoriva A, Graham T et al (2019) Resolving genetic heterogeneity in cancer. Rev Genet, Nat. https://doi.org/10.1038/s41576-019-0114-6

    Book  Google Scholar 

  • Uddin MS, Stachowiak A, Mamun AA et al (2018) Autophagy and Alzheimer’s disease: from molecular mechanisms to therapeutic implications. Front Aging Neurosci 10:4

    Article  CAS  Google Scholar 

  • van der Graaf A, Wardenaar R, Neumann DA et al (2015) Rate, spectrum, and evolutionary dynamics of spontaneous epimutations. Proc Natl Acad Sci 112:6676–6681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Deursen JM (2014) The role of senescent cells in ageing. Nature 509:439–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vassilieva LL, Hook AM, Lynch M (2000) The fitness effects of spontaneous mutations in Caenorhabditis elegans. Evolution 54:1234–1246

    Article  CAS  PubMed  Google Scholar 

  • Vavouri T, Semple JI, Garcia-Verdugo R, Lehner B (2009) Intrinsic protein disorder and interaction promiscuity are widely associated with dosage sensitivity. Cell 138:198–208

    Article  CAS  PubMed  Google Scholar 

  • Veitia RA (2018) On the loss of human sex chromosomes in lymphocytes with age: a quantitative treatment. Eur J Hum Genet EJHG 26:1875–1878

    Article  CAS  PubMed  Google Scholar 

  • Veitia RA (2019) Darwinian selection within an individual or somatic selection: facts and models. J Mol Cell Biol 11(8):719–722

    Article  PubMed  PubMed Central  Google Scholar 

  • Veitia RA, Govindaraju DR, Bottani S, Birchler JA (2017) Aging: somatic mutations, epigenetic drift and gene dosage imbalance. Trends Cell Biol 27:299–310

    Article  CAS  PubMed  Google Scholar 

  • Vijg J (2007) Aging of the genome: the dual role of the DNA in life and death. Springer, New York

    Book  Google Scholar 

  • Villacampa-Fernández P, Navarro-Pardo E, Tarín JJ, Cano A (2017) Frailty and multimorbidity: two related yet different concepts. Maturitas 95:31–35

    Article  PubMed  Google Scholar 

  • Visvader JE (2011) Cells of origin in cancer. Nature 469:314–322

    Article  CAS  PubMed  Google Scholar 

  • Wagner GP (1996) Homologues, natural kinds and the evolution of modularity. Integr Comp Bio 36:36–43

    Google Scholar 

  • Walston J, Robinson TN, Zieman S et al (2017) Integrating frailty research into the medical specialties—report from a U13 conference. J Am Geriatr Soc 65:2134–2139

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Egnot B, Paluh J (2016) Cell competition and cooperation in tissue development. J Tissue Sci Eng 7:1–3

    Article  Google Scholar 

  • Winblad B et al (2016) Defeating Alzheimer’s disease and other dementias: a priority for European science and society. Lancet Neurol 15(5):455–532

    Article  PubMed  Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eug 15:323–389

    Article  CAS  Google Scholar 

  • Xiao FH, Wang HT, Kong QP (2019) Dynamic DNA methylation during aging: a “prophet” of age-related outcomes. Front Genet 10:107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zink F, Stacey SN, Norddahl GL et al (2017) Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood 130(6):742–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We dedicate this paper to Richard Lewontin and Tomoko Ohta and for their prescient ideas on units of selection and mutational effects, respectively. We thank the referees for helpful comments. DRG thanks Peter Ellison, David Haig, Nir Barzilai, Jan Vijg for support, and Drs. Caleb Finch, Robert Perlman, Annapurna Poduri, Sri Raj and Alan Templeton, for suggestions.

Author information

Authors and Affiliations

Authors

Contributions

DRG, HI, and RV designed study, performed research, contributed new analytical tools, analyzed data and wrote the paper.

Corresponding authors

Correspondence to Hideki Innan or Diddahally R. Govindaraju.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 152 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Innan, H., Veitia, R. & Govindaraju, D.R. Genetic and epigenetic Muller’s ratchet as a mechanism of frailty and morbidity during aging: a demographic genetic model. Hum Genet 139, 409–420 (2020). https://doi.org/10.1007/s00439-019-02067-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-019-02067-9

Navigation