Skip to main content

Genetic Loads and the Cost of Natural Selection

  • Chapter
Mathematical Topics in Population Genetics

Part of the book series: Biomathematics ((BIOMATHEMATICS,volume 1))

Abstract

The basic ideas of genetic load and the cost of natural selection are both from J. B. S. Haldane. In his early papers on natural selection (1924–1932), Haldane was concerned with both the dynamics and the statics of evolution. He emphasized that, although evolution depends on changes of gene frequency, nevertheless at any one time the population is in approximate equilibrium for most factors.

Paper number 1303 from the Laboratory of Genetics, University of Wisconsin. Some of the work reported here was supported by the National Institutes of Health (GM-15422).

This paper is dedicated to Professor Th. Dobzhansky for his seventieth birthday celebration and his long lasting leadership in experimental population genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brues, Alice M.: The cost of evolution vs. the cost of not evolving. Evolution 18, 379–383 (1964).

    Article  Google Scholar 

  • - Genetic load and its varieties. Science 164, 1130–1136 (1969).

    Article  Google Scholar 

  • Chung, C. S.: Relative genetic load due to lethal and detrimental genes in irradiated populations of Drosophila melanogaster. Genetics 47, 1489–1504 (1962).

    Google Scholar 

  • -, O. W. Robinson, and N. E. Morton: A note of deaf mutism. Ann. Hum. Genet. 23, 357–366 (1959).

    Article  Google Scholar 

  • Crow, J. F.: Some possibilities for measuring selection intensities in man. Human Biol. 30, 1–13 (1958).

    Google Scholar 

  • - Population genetics. Amer. J. Hum. Genet. 13, 137–150 (1961).

    Google Scholar 

  • - Population genetics: Selection. Methodology in human genetics. Ed. by W. Burdette. San Francisco: Holden-Day 1962.

    Google Scholar 

  • - The concept of genetic load: A reply. Amer. J. Hum. Genet. 15, 310–315 (1963).

    Google Scholar 

  • - Problems of ascertainment in the analysis of family data. Genetics and the epidemiology of chronic diseases. Publ. 1163, U.S. Public Health Service, pp. 23–44 (1965).

    Google Scholar 

  • - Some analyses of hidden variability in Drosophila populations. Population biology and evolution, pp. 71–86. Ed. by R. Lewontin. Syracuse: University Press 1968a.

    Google Scholar 

  • - The cost of evolution and genetic loads. In: Haldane and modern biology, pp. 165–178. Ed. by K. Dronamraju. Baltimore: Johns Hopkins Press 1968b.

    Google Scholar 

  • - Molecular genetics and population genetics. Proc. Int. Cong. Genet. 3, 105–113 (1969).

    Google Scholar 

  • -, and N. E. Morton: Measurement of gene frequency drift in small populations. Evolution 9, 202–214 (1955).

    Article  Google Scholar 

  • -, - The genetic load due to mother-child incompatibility. Amer. Natur. 94, 413–419 (1960).

    Article  Google Scholar 

  • Dewey, W. J., I. Barrai, N. E. Morton, and M. P. Mi. Recessive genes for severe mental defect. Amer. J. Hum. Genet. 17, 237–256 (1965).

    Google Scholar 

  • Dobzhansky, Th.: A review of some fundamental concepts and problems of population genetics. Cold Spr. Harb. Symp. Quant. Biol. 20, 1–15 (1955).

    Article  Google Scholar 

  • - Genetic loads in natural populations. Science 126, 191–194 (1957).

    Article  Google Scholar 

  • Feller, W.: On the influence of natural selection on population size. Proc. Natl. Acad. Sci. (Wash.) 55, 733–738 (1966).

    Article  MATH  MathSciNet  Google Scholar 

  • - On fitness and the cost of natural selection. Genet. Res. 9, 1–15 (1967).

    Article  Google Scholar 

  • Fisher, R. A.: The Genetical Theory of Natural Selection. Oxford: Clarendon Press 1930; Rev. ed.: New York: Dover Press 1958.

    MATH  Google Scholar 

  • Greenberg. Rayla, and J. F. Crow: A comparison of the effect of lethal and detrimental chromosomes from Drosophila populations. Genetics 45, 1153–1168 (1960).

    Google Scholar 

  • Haldane, J. B. S.: A mathematical theory of natural and artificial selection. Part I. Trans. Cambridge Phil. Soc. 23, 19–41; Part II. Biol. Proc. Cambridge Phil. Soc. 1, 158–163; Part III. Proc. Cambridge Phil. Soc. 23, 363–372; Part IV. Proc. Cambridge Phil. Soc. 23, 607–615; Part V. Proc. Cambridge Phil. Soc. 23, 838–844; Part VI. Proc. Cambridge Phil. Soc. 26, 220–230; Part VII. Proc. Cambridge Phil. Soc. 27, 131–136; Part VIII. Proc. Cambridge Phil. Soc. 27, 137–142; Part IX. Proc. Cambridge Phil. Soc. 28, 244–248 (1924–1932).

    Google Scholar 

  • - The causes of evolution. New York: Harper and Brothers 1932; Reprinted, Ithaca, N. Y.: Cornell University Press 1966.

    Google Scholar 

  • - The effect of variation on fitness. Amer. Natur. 71, 337–349 (1937).

    Article  Google Scholar 

  • - The cost of natural selection. J. Genet. 55, 511–524 (1957a).

    Article  Google Scholar 

  • - The conditions for co-adaptation in polymorphism for inversions. J. Genet. 55, 218–225 (1957b).

    Article  Google Scholar 

  • - More precise expressions for the cost of natural selection. J. Genet. 57, 351–360 (1960). -, and S. D. Jayakar. The nature of human genetic loads. J. Genet. 59, 53–59 (1965).

    Article  Google Scholar 

  • -, and S. D. Jayakar. The nature of human genetic loads. J. Genet. 59, 53–59 (1965).

    Article  Google Scholar 

  • Kimura, M.: Rules for testing the stability of a selective polymorphism. Proc. Natl. Acad. Sci. (Wash.) 42, 336–340 (1956a).

    Article  MATH  Google Scholar 

  • - A model of a genetic system which leads to closer linkage by natural selection. Evolution 10, 278–287 (1956b).

    Article  Google Scholar 

  • - Optimum mutation rate and degree of dominance as determined by the principle of minimum genetic load. J. Genet. 57, 21–34 (1960).

    Article  Google Scholar 

  • - Some calculations on the mutation load. Jap. J. Genet. (Suppl.) 36, 179–190 (1961).

    Google Scholar 

  • - On the evolutionary adjustment of spontaneous mutation rates. Genet. Res. 9, 23–34 (1967).

    Article  Google Scholar 

  • - Evolutionary rate at the molecular level. Nature (Lond.) 217, 624–626 (1968).

    Article  Google Scholar 

  • -, and J. F. Crow: The measurement of effective population number. Evolution 17, 279–288 (1963).

    Article  Google Scholar 

  • -, -The number of alleles that can be maintained in a finite population. Genetics 49, 725–738 (1964).

    Google Scholar 

  • -, and T. Maruyama: The mutational load with epistatic gene interactions in fitness. Genetics 54, 1337–1351 (1966).

    Google Scholar 

  • - -, and J. F. Crow:The mutation load in small populations. Genetics 48, 1303–1312 (1963).

    Google Scholar 

  • King, J. L.: The gene interaction component of the genetic load. Genetics 53, 403–413 (1966).

    Google Scholar 

  • - Continuously distributed factors affecting fitness. Genetics 55, 483–492 (1967)

    Google Scholar 

  • -, and T. H. Jukes: Non-Darwinian evolution. Science 164, 788–798 (1969).

    Article  Google Scholar 

  • Kojima, K., and K. M. Yarbrough: Frequency-dependent selection at the esterase-6 locus in Drosophila melanogaster. Proc. Natl. Acad. Sci. (Wash.) 57, 645–649 (1967).

    Article  Google Scholar 

  • Levene, H.: Genetic equilibrium when more than one ecological niche is available. Amer. Natur. 87, 311–313 (1953).

    Google Scholar 

  • - Inbred genetic loads and the determination of population structure. Proc. Natl. Acad. Sci. (Wash.) 50, 587–592 (1963).

    Article  Google Scholar 

  • Lewontin, R. C.: Population genetics. Ann. Rev. Genet. 1, 37–70 (1967).

    Article  Google Scholar 

  • -, and J. L. Hubby: A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics 54, 595–609 (1966).

    Google Scholar 

  • Li, C. C.: Decrease of population fitness upon inbreeding. Proc. Natl. Acad. Sci. (Wash.) 49, 439–445 (1963a).

    Article  Google Scholar 

  • - Genetic aspects of consanguinity. Amer. J. Med. 34, 702–714.

    Google Scholar 

  • - The way the load ratio works. Amer. J. Hum. Genet. 15, 316–321 (1963c).

    Google Scholar 

  • - Genetic equilibrium under selection. Biometrics 23, 397–484 (1967).

    Article  MathSciNet  Google Scholar 

  • Mandel, S. P. H.: The stability of a multiple allelic system. Heredity 13, 289–302 (1959).

    Article  Google Scholar 

  • Maynard Smith, J.: “Haldane’s Dilemma” and the rate of evolution. Nature (Lond.) 219, 1114–1116 (1968).

    Article  Google Scholar 

  • Milkman, R. D.: Heterosis as a major cause of heterozygosity in nature. Genetics 55, 493–495 (1967).

    Google Scholar 

  • Morton, N. E.: The mutational load due to detrimental genes in man. Amer. J. Hum. Genet. 12, 348–364 (1960).

    Google Scholar 

  • - Models and evidence in human population genetics. Proc. XI Int. Cong. Genet., pp. 935–951, 1965.

    Google Scholar 

  • - and C. S. Chung: Formal genetics of muscular dystrophy. Amer. J. Hum. Genet. 11, 360–379 (1959).

    Google Scholar 

  • - -,and L. D. Friedman: Relation between homozygous viability and average dominance in Drosophila melanogaster. Genetics 60, 601–614 (1968).

    Google Scholar 

  • -, J. F. Crow, and H. J. Muller: An estimate of the mutational damage in man from data on consanguineous marriages. Proc. Natl. Acad. Sci. (Wash.) 42, 855–863 (1956).

    Article  Google Scholar 

  • Mukai, T.: The genetic structure of natural populations of Drosophila melanogaster. VII. Synergistic interaction of spontaneous mutant polygenes controlling viability. Genetics 61, 149–161 (1969).

    Google Scholar 

  • Muller, H. J.: Our load of mutations. Amer. J. Hum. Gent. 2, 111–176 (1950).

    Google Scholar 

  • Nei, M.: Effect of linkage on the genetic load manifested under inbreeding. Genetics 51, 679–688 (1965).

    Google Scholar 

  • - Evolutionary change of linkage intensity. Nature (Lond.) 218, 1160–1161 (1968a).

    Article  Google Scholar 

  • - On the genetic load manifested under inbreeding. (personal communication) (1968b). (1968b).

    Google Scholar 

  • Prout, T.: Sufficient conditions for multiple niche polymorphism. Amer. Natur. 102, 493–496 (1968).

    Article  Google Scholar 

  • Sandler, L., and E. Novitski: Meiotic drive as an evolutionary force. Amer. Natur. 91, 105–110 (1957).

    Article  Google Scholar 

  • Sanghvi, L. D.: The concept of genetic load: A critique. Amer. J. Hum. Genet. 15, 298–309 (1963).

    Google Scholar 

  • Sved, J. A.: Possible rates of gene substitution in evolution. Amer. Natur. 102, 283–293 (1968a).

    Article  Google Scholar 

  • - The stability of linked systems of loci with a small population size. Genetics 59, 543–563 (1968b).

    Google Scholar 

  • -, T. E. Reed, and W. F. Bodmer: The number of balanced polymorphisms that can be maintained in a natural population. Genetics 55, 469–481 (1967).

    Google Scholar 

  • Temin, Rayla G.: Homozygous viability and fertility loads in Drosophila melanogaster. Genetics 53, 27–46 (1966).

    Google Scholar 

  • -, Helen U. Meyer, P. S. Dawson, and J. F. Crow: The influence of epistasis on homozygous viability depression in Drosophila melanogaster. Genetics 61, 497–519 (1969).

    Google Scholar 

  • Van Valen, L.: Haldane’s dilemma, evolutionary rates and heterosis. Amer. Natur. 97, 185–190 (1963).

    Article  Google Scholar 

  • Wallace, B.: Topics in Population Genetics. New York: W. W. Norton Comp. (1968).

    Google Scholar 

  • Wills, C.: The mutational load in two natural populations of Drosophila pseudoobscura. Genetics 53, 281–294 (1966).

    Google Scholar 

  • -, J. Crenshaw, and J. Vitale: A computer model allowing maintenance of large amounts genetic variability in Mendelian populations. I. Assumptions and results for large populations. Genetics (in press) (1969).

    Google Scholar 

  • Wright. S.: Evolution in Mendelian populations. Genetics 16, 97–159 (1931).

    Google Scholar 

  • - Adaptation and selection. In: Genetics, paleontology, and evolution, pp. 365–389. Ed. by G. L. Jepson, G. G. Simpson, and E. Mayr. Princeton, N. J.: Princeton Univ. Press 1949.

    Google Scholar 

  • - The genetical structure of populations. Ann. Eugen. 15, 323–354 (1951).

    Article  Google Scholar 

Download references

Authors

Editor information

Ken-ichi Kojima

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Crow, J.F. (1970). Genetic Loads and the Cost of Natural Selection. In: Kojima, Ki. (eds) Mathematical Topics in Population Genetics. Biomathematics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46244-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46244-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46246-7

  • Online ISBN: 978-3-642-46244-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics