Skip to main content
Log in

Genome-wide identification and comparative analysis of the cation proton antiporters family in pear and four other Rosaceae species

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The monovalent cation proton antiporters (CPAs) play essential roles in plant nutrition, development, and signal transduction by regulating ion and pH homeostasis of the cell. The CPAs of plants include the Na+/H+ exchanger, K+ efflux antiporter, and cation/H+ exchanger families. However, currently, little is known about the CPA genes in Rosaceae species. In this study, 220 CPA genes were identified from five Rosaceae species (Pyrus bretschneideri, Malus domestica, Prunus persica, Fragaria vesca, and Prunus mume), and 53 of which came from P. bretschneideri. Phylogenetic, structure, collinearity, and gene expression analyses were conducted on the entire CPA genes of pear. Gene expression data showed that 35 and 37 CPA genes were expressed in pear fruit and pollen tubes, respectively. The transcript analysis of some CPA genes under abiotic stress conditions revealed that CPAs may play an important role in pollen tubes growth. The results presented here will be useful in improving understanding of the complexity of the CPA gene family and will promote functional characterization in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad I, Maathuis FJ (2014) Cellular and tissue distribution of potassium: physiological relevance, mechanisms and regulation. J Plant Physiol 171(9):708–714

    Article  CAS  PubMed  Google Scholar 

  • Airoldi CA, Davies B (2012) Gene duplication and the evolution of plant MADS-box transcription factors. J Genet Genomics 39(4):157–165

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Buylla ER, Pelaz S, Liljegren SJ, Gold SE, Burgeff C, Ditta GS, De Pouplana LR, Martínez-Castilla L, Yanofsky MF (2000) An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci USA 97(10):5328–5333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285(5431):1256–1258

    Article  CAS  PubMed  Google Scholar 

  • Aranda-Sicilia MN, Cagnac O, Chanroj S, Sze H, Rodríguez-Rosales MP (2012) Venema K (2012) Arabidopsis KEA2, a homolog of bacterial KefC, encodes a K+/H+ antiporter with a chloroplast transit peptide. BBA-Biomembranes 1818(9):2362–2371

    Article  CAS  PubMed  Google Scholar 

  • Armbruster U, Carrillo LR, Venema K, Pavlovic L, Schmidtmann E, Kornfeld A, Jahns P, Berry JA, Kramer DM, Jonikas MC (2014) Ion antiport accelerates photosynthetic acclimation in fluctuating light environments. Nat Commun 5:5439. doi:10.1038/ncomms6439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banjara M, Zhu L, Shen G, Payton P, Zhang H (2012) Expression of an Arabidopsis sodium/proton antiporter gene (AtNHX1) in peanut to improve salt tolerance. Plant Biotechnol Rep 6(1):59–67

    Article  Google Scholar 

  • Barragán V, Leidi EO, Andrés Z, Rubio L, De Luca A, Fernández JA, Cubero B, Pardo JM (2012) Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant cell 24(3):1127–1142

    Article  PubMed  PubMed Central  Google Scholar 

  • Bassil E, Blumwald E (2014) The ins and outs of intracellular ion homeostasis: NHX-type cation/H+ transporters. Curr Opin Plant Biol 22:1–6

    Article  CAS  PubMed  Google Scholar 

  • Bassil E, M-A Ohto, Esumi T, Tajima H, Zhu Z, Cagnac O, Belmonte M, Peleg Z, Yamaguchi T, Blumwald E (2011a) The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development. Plant cell 23(1):224–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassil E, Tajima H, Liang Y-C, M-a Ohto, Ushijima K, Nakano R, Esumi T, Coku A, Belmonte M, Blumwald E (2011b) The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. Plant cell 23(9):3482–3497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassil E, Coku A, Blumwald E (2012) Cellular ion homeostasis: emerging roles of intracellular NHX Na+/H antiporters in plant growth and development. J Exp Bot 63(16):5727–5740

    Article  CAS  PubMed  Google Scholar 

  • Blumwald E, Poole RJ (1985) Na+/H+ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris. Plant Physiol 78(1):163–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chanroj S, Lu Y, Padmanaban S, Nanatani K, Uozumi N, Rao R, Sze H (2011) Plant-specific cation/H+ exchanger 17 and its homologs are endomembrane K+ transporters with roles in protein sorting. J Biol Chem 286(39):33931–33941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chanroj S, Wang G, Venema K, Zhang MW, Delwiche CF, Sze H (2012) Conserved and diversified gene families of monovalent cation/H+ antiporters from algae to flowering plants. Front Plant Sci. doi:10.3389/fpls.2012.00025

    PubMed  PubMed Central  Google Scholar 

  • Chanroj S, Padmanaban S, Czerny DD, Jauh GY, Sze H (2013) K+ transporter AtCHX17 with its hydrophilic C tail localizes to membranes of the secretory/endocytic system: role in reproduction and seed set. Mol Plant 6(4):1226–1246

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45(2):437–448

    Article  CAS  Google Scholar 

  • Chou KC, Shen HB (2010) Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE 5(6):e11335

    Article  PubMed  PubMed Central  Google Scholar 

  • Eckardt NA, Berkowitz GA (2011) Functional analysis of Arabidopsis NHX antiporters: The role of the vacuole in cellular turgor and growth. Plant cell 23(9):3087–3088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao YB, Zhou HS, Chen JQ, Jiang XT, Tao ST, Wu JY, Zhang SL (2015) Mitochondrial dysfunction mediated by cytoplasmic acidification results in pollen tube growth cessation in Pyrus pyrifolia. Physiol Plantarum 153(4):603–615

    Article  CAS  Google Scholar 

  • Hall D, Evans A, Newbury H, Pritchard J (2006) Functional analysis of CHX21: a putative sodium transporter in Arabidopsis. J Exp Bot 57(5):1201–1210

    Article  CAS  PubMed  Google Scholar 

  • Han L, Li JL, Wang L, Shi WM, Su YH (2015) Identification and localized expression of putative K+/H+ antiporter genes in Arabidopsis. Acta Physiol Plant 37(5):1–14

    Article  Google Scholar 

  • Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31(8):1296–1297

    Article  PubMed  Google Scholar 

  • Hur Y, Kim JH, Lee DJ, Chung KM, Woo HR (2012) Overexpression of AtCHX24, a member of the cation/H+ exchangers, accelerates leaf senescence in Arabidopsis thaliana. Plant Sci 183:175–182

    Article  CAS  PubMed  Google Scholar 

  • Isayenkov S, Isner J-C, Maathuis FJ (2011) Rice two-pore K+ channels are expressed in different types of vacuoles. Plant Cell 23(2):756–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjövall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126(4):1358–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krupnik VE, Sharp JD, Jiang C, Robison K, Chickering TW, Amaravadi L, Brown DE, Guyot D, Mays G, Leiby K (1999) Functional and structural diversity of the human Dickkopf gene family. Gene 238(2):301–313

    Article  CAS  PubMed  Google Scholar 

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19(9):1639–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunz HH, Gierth M, Herdean A, Satoh-Cruz M, Kramer DM, Spetea C, Schroeder JI (2014) Plastidial transporters KEA1,-2, and-3 are essential for chloroplast osmoregulation, integrity, and pH regulation in Arabidopsis. Proc Natl Acad Sci USA 111(20):7480–7485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee TH, Tang H, Wang X, Paterson AH (2013) PGDD: a database of gene and genome duplication in plants. Nucleic Acids Res 41(D1):D1152–D1158

    Article  CAS  PubMed  Google Scholar 

  • Li M, Li LT, Dunwell JM, Qiao X, Liu X, Zhang SL (2014) Characterization of the lipoxygenase (LOX) gene family in the Chinese white pear (Pyrus bretschneideri) and comparison with other members of the Rosaceae. BMC Genom 15(1):444

    Article  Google Scholar 

  • Lu Y, Chanroj S, Zulkifli L, Johnson MA, Uozumi N, Cheung A, Sze H (2011) Pollen tubes lacking a pair of K+ transporters fail to target ovules in Arabidopsis. Plant cell 23(1):81–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3(5):418–426

    CAS  PubMed  Google Scholar 

  • Padmanaban S, Chanroj S, Kwak JM, Li X, Ward JM, Sze H (2007) Participation of endomembrane cation/H+ exchanger AtCHX20 in osmoregulation of guard cells. Plant Physiol 144(1):82–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan X, Peng FY, Weselake RJ (2015) Genome-wide analysis of PHOSPHOLIPID: DIACYLGLYCEROL ACYLTRANSFERASE (PDAT) genes in plants reveals the eudicot-wide PDAT gene expansion and altered selective pressures acting on the core eudicot PDAT paralogs. Plant Physiol 167(3):887–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786

    Article  CAS  PubMed  Google Scholar 

  • Pittman JK (2012) Multiple transport pathways for mediating intracellular pH homeostasis: the contribution of H+/ion exchangers. Front Plant Sci. doi:10.3389/fpls.2012.00011

    Google Scholar 

  • Qiao X, Li M, Li LT, Yin H, Wu J, Zhang SL (2015) Genome-wide identification and comparative analysis of the heat shock transcription factor family in Chinese white pear (Pyrus bretschneideri) and five other Rosaceae species. BMC Plant Biol 15(1):12

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiu QS (2012) Plant and yeast NHX antiporters: roles in membrane trafficking. J Integr Plant Biol 54(2):66–72

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Rosales MP, Gálvez FJ, Huertas R, Aranda MN, Baghour M, Cagnac O, Venema K (2009) Plant NHX cation/proton antiporters. Plant Signal Behav 4(4):265–276

    Article  PubMed  PubMed Central  Google Scholar 

  • Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 95(11):5857–5864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz J, Copley RR, Doerks T, Ponting CP, Bork P (2000) SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res 28(1):231–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sze H, Padmanaban S, Cellier F, Honys D, Cheng N-H, Bock KW, Conéjéro G, Li X, Twell D, Ward JM (2004) Expression patterns of a novel AtCHX gene family highlight potential roles in osmotic adjustment and K+ homeostasis in pollen development. Plant Physiol 136(1):2532–2547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH (2008) Synteny and collinearity in plant genomes. Science 320(5875):486–488

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wu W-H (2013) Potassium transport and signaling in higher plants. Ann Rev Plant Biol 64:451–476

    Article  CAS  Google Scholar 

  • Wang D, Zhang Y, Zhang Z, Zhu J, Yu J (2010) KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genom Proteom Bioinform 8(1):77–80

    Article  CAS  Google Scholar 

  • Wang Y, Wang X, Paterson AH (2012) Genome and gene duplications and gene expression divergence: a view from plants. Ann NY Acad Sci 1256(1):1–14

    Article  PubMed  Google Scholar 

  • Wang N, Xiang Y, Fang L, Wang Y, Xin H, Li S (2013) Patterns of gene duplication and their contribution to expansion of gene families in grapevine. Plant Mol Biol Rep 31(4):852–861

    Article  CAS  Google Scholar 

  • Wei B, Zhang R-Z, Guo J-J, Liu D-M, Li A-L, Fan R-C, Mao L, Zhang X-Q (2014) Genome-wide analysis of the MADS-box gene family in Brachypodium distachyon. PLoS One 9(1):e84781

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao ST, Korban SS, Wang H (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23(2):396–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi T, Apse MP, Shi H, Blumwald E (2003) Topological analysis of a plant vacuolar Na+/H+ antiporter reveals a luminal C terminus that regulates antiporter cation selectivity. Proc Natl Acad Sci USA 100(21):12510–12515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye CY, Yang XH, Xia XL, Yin WL (2013) Comparative analysis of cation/proton antiporter superfamily in plants. Gene 521(2):245–251

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Cheng N-H, Motes CM, Blancaflor EB, Moore M, Gonzales N, Padmanaban S, Sze H, Ward JM, Hirschi KD (2008) AtCHX13 is a plasma membrane K+ transporter. Plant Physiol 148(2):796–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Li P, Motes CM, Park S, Hirschi KD (2015) CHX14 is a plasma membrane K-efflux transporter that regulates K + redistribution in Arabidopsis thaliana. Plant, Cell Environ 38(11):2223–2238

    Article  CAS  Google Scholar 

  • Zheng S, Pan T, Fan L, Qiu Q-S (2013) A Novel AtKEA Gene Family, Homolog of Bacterial K+/H+ Antiporters, Plays Potential Roles in K+ Homeostasis and Osmotic Adjustment in Arabidopsis. PLoS ONE 8(11):81463

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Independent Innovation of Agricultural Sciences in Jiangsu Province [CX(15)1023], the National Natural Science Foundation of China (31471839, 31272119, 31522048), Jiangsu Province Science and Technology Support Program (BE2014400 and BE2014334) and the Doctoral Fund of Ministry of Education of China (20120097120046, 20120097110041 and 20130097130004). We thank International Science Editing for helping us to improve the article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juyou Wu or Shaoling Zhang.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by R. Velasco.

H. Zhou and K. Qi contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Qi, K., Liu, X. et al. Genome-wide identification and comparative analysis of the cation proton antiporters family in pear and four other Rosaceae species. Mol Genet Genomics 291, 1727–1742 (2016). https://doi.org/10.1007/s00438-016-1215-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-016-1215-y

Keywords

Navigation