Skip to main content
Log in

Development of a mosquito attractant blend of small molecules against host-seeking Aedes aegypti

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

A mosquito’s dependence on olfaction in the hunt for human host could be efficiently exploited to protect humans from mosquito bites. The present study is undertaken to make the most attractant compound blend for Aedes aegypti mosquitoes to lure them to traps. Eleven molecules (M1–M11) at different dilutions were screened for attractancy against non-blood-fed adult female mosquitoes in an olfactometer. The results showed that the attractancy was dependent on both the chemical nature of the molecule and the strength of the odor. Out of 11 molecules screened, 9 showed significant attractancy (P < 0.05) when tested individually. The attractancy was in the order of M11 > M7 > M6 > M10 > M9 > M3 > M2 > M1 > M4 with attractancy indices (AIs) 86.11, 55.93, 55.17, 54, 52.94, 52, 50, 43.64, and 32, respectively, at the optimum dilutions. Seven blends (I–VII) were made and were screened for attractancy against Ae. aegypti. All the blends showed significant attractancy (P < 0.05). The attractancy was in the order of blend VII > III > IV > I > VI > V > II with AIs 96.63, 89.19, 65, 57.89, 56.1, 47.13, and 44.44, respectively. Among the seven blends, blend VII with constituent molecules M6, M9, M10, and M11 is the most promising with an AI value of 96.63. This blend will be useful in luring the host-seeking mosquitoes to traps. The field efficacy of these attractant blends may be explored in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bernier UR, Kline DL, Barnard DR, Schreck CE, Yost RA (2000) Analysis of human skin emanations by gas chromatography/mass spectrometry. 2. Identification of volatile compound that are candidate attractants for the yellow fever mosquito (Aedes aegypti). Anal Chem 72:747–756

    Article  CAS  PubMed  Google Scholar 

  • Bernier UR, Kline DL, Schreck CE, Yost RA, Barnard DR (2002) Chemical analysis of human skin emanations: composition of volatiles from humans that differ in attraction of Aedes aegypti (Diptera: Culicidae). J Am Mosq Control Assoc 18:186–195

    CAS  PubMed  Google Scholar 

  • Bernier UR, Kline DL, Posey KH, Booth MM, Yost RA, Barnard DR (2003) Synergistic attraction of Aedes aegypti (L.) to binary blends of L-lactic acid and acetone, dichloromethane, or dimethyl disulfide. J Med Entomol 40:653–656

    Article  CAS  PubMed  Google Scholar 

  • Beroza M, Green N (1963) Materials tested as insect attractants, Agricultural hand book no. 239, US Dept of Agriculture, p 1–151

  • Bosch OJ, Geier M, Boeckh J (1999) Ammonia as an active component of host odour for the yellow fever mosquito, Aedes aegypti. Chem Senses 24:647–653

    Article  PubMed  Google Scholar 

  • Bosch OJ, Geier M, Boeckh J (2000) Contribution of fatty acids to olfactory host finding of female Aedes aegypti. Chem Senses 26(3):323–333

    Article  Google Scholar 

  • Carlson DA, Smith N, Gouck HK, Godwin DR (1973) Yellow fever mosquitoes: compounds related to lactic acid that attract females. J Econ Entomol 66:269–276

    Article  Google Scholar 

  • El-Sayed A, Bengtsson M, Rauscher S, Lofvist J (1999) Multicomponent sex pheromone in codling moth (Lepidoptera: Tortricidae). Environ Entomol 28:775–779

    Article  CAS  Google Scholar 

  • Englbrecht C, Gordon S, Venturelli C, Rose A, Geier M (2015) Evaluation of BG-sentinel trap as a management tool to reduce Aedes albopictus nuisance in an urban environment in Italy. J Am Mosq Control Assoc 31(1):16–25

    Article  PubMed  Google Scholar 

  • Essen PV, Kemme J, Ritchie S, Kay B (1994) Differential responses of Aedes and Culex mosquitoes to octenol or light in combination with carbon dioxide in Queensland, Australia. Med Vet Entomol 8(1):63–67

    Article  PubMed  Google Scholar 

  • Focks DA (2003) A review of entomological sampling methods and indicators for dengue vectors. TDR WHO, Geneva

    Google Scholar 

  • Geier M, Boeckh J (1999) A new Y-tube olfactometer for mosquitoes to measure the attractiveness of host odours. Entomol Exp Appl 92:9–19

    Article  Google Scholar 

  • Geier M, Bosch OJ, Boeckh J (1999) Influence of odour plume structure on upwind flight of mosquitoes towards hosts. J Exp Biol 202:1639–1648

    PubMed  Google Scholar 

  • Geier M, Rose A, Grunewald J, Jones O (2006) New mosquito traps improve the monitoring of disease vectors. Int Pest Control 48:124–126

    Google Scholar 

  • Gillies MT (1980) The role of carbon dioxide in host-feeding by mosquitoes (Diptera: Culicidae). Bull Entomol Res 70:525–532

    Article  Google Scholar 

  • Grieco JP, Achee NL, Chareonviriyaphap T, Suwonkerd W, Chauhan K, Sardelis MR, Roberts DR (2007) A new classification system for the actions of IRS chemicals traditionally used for malaria control. PLoS One 2(1):e716

    Article  PubMed  PubMed Central  Google Scholar 

  • Gubler DJ (1998) Resurgent vector borne diseases as a global health problem. Emerg Infect Dis 4:1–9

    Article  Google Scholar 

  • Guha L, Seenivasagan T, Bandyopadhyay P, Thanvir Iqbal S, Sathe M, Sharma P, Parashar BD, Kaushik MP (2012) Oviposition and flight orientation response of Aedes aegypti to certain aromatic aryl hydrazono esters. Parasitol Res 111(3):975–982

    Article  PubMed  Google Scholar 

  • Hall DR, Beevor PS, Cork A, Nesbitt BF, Vale GA (1984) 1-Octen-3-ol, a potent olfactory stimulant and attractant for tsetse isolated from cattle odours. Insect Sci Appl 5:33–339

    Google Scholar 

  • Hallem EA, Carlson JR (2006) Coding of odors by a receptor repertoire. Cell 125:143–160

    Article  CAS  PubMed  Google Scholar 

  • Jones PL, Pask GM, Rinker DC, Zwiebel LJ (2011) Functional agonism of insect odorant receptor ion channels. Proc Natl Acad Sci U S A 108:8821–8825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kellog FE (1970) Water vapor and CO2 receptors in Aedes aegypti (L.). J Insect Physiol 16:99–108

    Article  Google Scholar 

  • Khalequzzaman M, Ara H, Zrhura F, Nahar J (2002) Toxic, repellent and attractant properties of some insecticides towards the housefly (Musca domestica L). Online J Biol Sci 2(10):672–676

    Article  Google Scholar 

  • Knols BGJ, Van Loon JJA, Cork A, Robinson RD, Meijerink J, De Jong R, Takken W (1997) Behavioral and electrophysiological responses of female malaria mosquito Anopheles gambiae (Diptera: Culicidae) to Limburger cheese volatiles. Bull Entomol Res 87:151–159

    Article  CAS  Google Scholar 

  • Ma M, Shepherd GM (2000) Functional mosaic organization of mouse olfactory receptor neurons. Proc Natl Acad Sci U S A 97:12869–12874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meijerink J, van Loon JJA (1999) Sensitivities of antennal olfactory neurons of the malaria mosquito, Anopheles gambiae, to carboxylic acids. J Insect Physiol 45:365–373

    Article  CAS  PubMed  Google Scholar 

  • Mukabana WR, Takken W, Coe R, Knols BGJ (2002) Host-specific cues cause differential attractiveness of Kenyan men to the African malaria vector Anopheles gambiae. Malar J 1:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Nisha M, Elango A, Sabesan S, Kalyanasundaram M (2013) Mosquito attractant blends to trap host seeking Aedes aegypti. Parasitol Res 112:1305–1312

    Article  Google Scholar 

  • Pascual-Villalobs MJ, Robledo A (1998) Screening for anti-insect activity in Mediterranean plants. Indian Crop Prod 8:183–194

    Article  Google Scholar 

  • Pitts RJ, Fox AN, Zwiebel LJ (2004) A highly conserved candidate chemoreceptor expressed in both olfactory and gustatory tissues in the malaria vector Anopheles gambiae. Proc Natl Acad Sci U S A 101(14):5058–5063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potter CJ (2014) Stop the biting: targeting a mosquito’s sense of smell. Cell 156(5):878–881

    Article  CAS  PubMed  Google Scholar 

  • Qiu YT, Smallegange RC, Van Loon JJA, Ter Braak CJ, Takken W (2006) Inter individual variation in the attractiveness of human odours to the malaria mosquito Anopheles gambiae s. s. Med Vet Entomol 20:280–287

    Article  CAS  PubMed  Google Scholar 

  • Seenivasagan T, Kavita RS, Sekhar K, Ganesan K, Shri P, Vijayaraghavan R (2009) Electroantennogram, flight orientation, and oviposition responses of Aedes aegypti to the oviposition pheromone n-heneicosane. Parasitol Res 104(4):827–833

    Article  CAS  PubMed  Google Scholar 

  • Sharma KR, Seenivasagan T, Rao AN, Ganesan K, Agarwal OP, Malhotra RC, Prakash S (2008) Oviposition responses of Aedes aegypti and Aedes albopictus to certain fatty acid esters. Parasitol Res 103:1065–1073

    Article  PubMed  Google Scholar 

  • Sharma KR, Seenivasagan T, Rao AN, Ganesan K, Agarwal OP, Prakash S (2009) Mediation of oviposition responses in the malaria mosquito Anopheles stephensi Liston by certain fatty acid esters. Parasitol Res 104:281–286

    Article  PubMed  Google Scholar 

  • Shirai Y, Tsuda T, Kitagawa S, Naitoh K, Seki T, Kamimura K, Morohashp M (2002) Alcohol ingestion stimulates mosquito attraction. J Am Mosq Control Assoc 18(2):91–96

    PubMed  Google Scholar 

  • Steib BM, Geier M, Boeckh J (2001) The effect of lactic acid on odour related host preference of yellow fever mosquitoes. Chem Senses 26:523–528

    Article  CAS  PubMed  Google Scholar 

  • Takken W (1991) The role of olfaction in host-seeking of mosquitoes: a review. Insect Sci Appl 12:287–295

    Google Scholar 

  • Takken W, Knols BG (1999) Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu Rev Entomol 44:131–157

    Article  CAS  PubMed  Google Scholar 

  • Tauxe GM, MacWilliam D, Boyle SM, Guda T, Ray A (2013) Targeting a dual detector of skin and CO2 to modify mosquito host seeking. Cell 155:1365–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner SL, Li N, Guda T, Githure J, Cardé RT, Ray A (2011) Ultra-prolonged activation of CO2-sensing neurons disorients mosquitoes. Nature 474:87–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JW, Wong AM, Flores J, Vosshall LB, Axel R (2003) Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112:271–282

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. P. Jambulingam, The Director, Vector Control Research Centre, Pondicherry, for the facilities provided and Dr. A.M. Manonmani, The Chief, HRD division for encouragement. The kind support given by the staff of HRD and the technical assistance rendered by the staff of the Unit of Chemistry is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nisha Mathew.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saratha, R., Mathew, N. Development of a mosquito attractant blend of small molecules against host-seeking Aedes aegypti . Parasitol Res 115, 1529–1536 (2016). https://doi.org/10.1007/s00436-015-4886-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4886-0

Keywords

Navigation