Skip to main content
Log in

Mediation of oviposition responses in the malaria mosquito Anopheles stephensi Liston by certain fatty acid esters

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The chemical factors involved in oviposition site selection by mosquitoes have become the focus of interest in recent years, and considerable attention is paid to the chemical cues influencing mosquito oviposition. Studies on synthetic oviposition attractants/repellents of long-chain fatty acid esters against Anopheles stephensi are limited. Screening and identification of chemicals which potentially attract/repel the gravid females to/or from oviposition site could be exploited for eco-friendly mosquito management strategies. The ester compounds demonstrated their ability to repel and attract the gravid A. stephensi females in the treated substrates. Significant level of concentration-dependent negative oviposition response of mosquitoes to octadecyl propanoate, heptadecyl butanoate, hexadecyl pentanoate, and tetradecyl heptanoate were observed. In contrast, decyl undecanoate, nonyl dodecanoate, pentyl hexadecanoate, and propyl octadecanoate elicited concentration-dependent positive oviposition responses from the gravid mosquitoes. Forcing a female to retain her eggs due to unavailability of a suitable oviposition site and attracting them to lay the eggs in a baited ovitraps shall ensure effective control of mosquito breeding and population buildup because the oviposition bioassay target the most susceptible stage of an insect life cycle. Treating relatively smaller natural breeding sites with an effective repellent and placing ovitraps containing an attractant in combination with insect-growth regulator (IGR)/insecticide would be a promising method of mosquito management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan SA, Kline DL (1998) Larval rearing water and preexisting eggs influence oviposition by Aedes aegypti and Aedes albopictus (Diptera: Culicidae). J Med Entomol 35:943–947

    CAS  PubMed  Google Scholar 

  • Angelon KA, Petranka (2002) Chemicals of predatory mosquitofish (Gambusia affinis) influence selection of oviposition site by Culex mosquitoes. J Chem Ecol 28:797–805

  • Beehler JW, Millar JG, Mulla MS (1994) Field evaluation of synthetic compounds mediating oviposition in Culex mosquitoes (Diptera: Culicidae). J Chem Ecol 20:281–291

    Article  CAS  Google Scholar 

  • Bentley MD, McDaniel NL, Yatagai M, Lee HP, Maynard R (1979) p-cresol: an oviposition attractant of Aedes triseriatus. Environ Entomol 8:206–209

    CAS  Google Scholar 

  • Bentley MD, McDaniel IN, Davis EE (1982) Studies of 4-methyl cyclochexanol: an Aedes triseriatus (Diptera: Culicidae) oviposition attractant. J Med Entomol 19:589–592

    CAS  PubMed  Google Scholar 

  • Blackwell A, Johnson SN (2000) Electrophysiological investigation of larval water and potential oviposition chemo-attractants for Anopheles gambiae s.s. Ann Trop Med Parasitol 94:389–398

    CAS  PubMed  Google Scholar 

  • Bray AM (2003) Ovipositional behaviour of Anopheles gambiae as influenced by variable substrates and chemicals. Michigan State University, Michigan

    Google Scholar 

  • Carde RT (1984) Chemo-orientation in flying insects. In: Bell WJ, Carde RT (eds) Chemical ecology of insects. Chapman and Hall, New York

    Google Scholar 

  • Chadee DD (1993) Oviposition response of Aedes aegypti (L.) to presence of conspecific eggs in the field in Trinidad, W. I. J Flordia Mosq Control Assoc 64:63–66

    Google Scholar 

  • Chadee DD (1997) Effects of forced egg-retention on the oviposition patterns of female Aedes aegypti (Diptera: Culicidae). Bull Ent Res 87:649–651

    Article  Google Scholar 

  • Clements AN (1999) The biology of mosquitoes, vol. 2. CABI, New York

    Google Scholar 

  • Collins FH, Paskewitz SM (1995) Malaria: current and future prospects for control. Ann Rev Entomol 40:195–219

    Article  CAS  Google Scholar 

  • Corbet PS, Chadee DD (1993) An improved method for detecting substrate preferences shown by mosquitoes that exhibit ‘skip-oviposition’. Physiol Entomol 18:114–118

    Article  Google Scholar 

  • Du YJ, Millar JG (1999) Electroantennogram and oviposition bioassay responses of Culex quinquefasciatus and Culex tarsalis (Diptera: Culicidae) to chemicals in odours from Bermuda grass infusions. J Med Entomol 36:158–166

    CAS  PubMed  Google Scholar 

  • Edgerly JS, McFarland M, Morgan P, Livdahl T (1998) A seasonal shift in egg-laying behavior in response to cues of future competition in a treehole mosquito. J Anim Ecol 67:805–818

    Article  Google Scholar 

  • Ferkovich SM, van Essen F, Taylor TR (1980) Hydrolysis of sex pheromone by antennal esterases of the cabbage looper, Trichoplusia ni. Chem Senses 5:33–46

    Article  CAS  Google Scholar 

  • Foster SP, Harris MO (1997) Behavioural manipulation methods for insect pest management. Ann Rev Entomol 42:123–146

    Article  CAS  Google Scholar 

  • Fradin MS, Day JF (2002) Comparative efficacy of insect repellents against mosquito bite. New England J Med 347:13–18

    Article  CAS  Google Scholar 

  • Ganesan K, Mendki MJ, Suryanarayana MVS, Prakash S, Malhotra RC (2006) Studies of Aedes aegypti (Diptera: Culicidae) ovipositional responses to newly identified semiochemicals from conspecific eggs. Aust J Entomol 45:75–80

    Article  Google Scholar 

  • Gibson G, Torr SJ (1999) Visual and olfactory responses of haematophagous diptera to host stimuli. Med Vet Entomol 13:2–23

    Article  CAS  PubMed  Google Scholar 

  • Gu W, Regens JL, Beier JC, Novak RJ (2006) Source reduction of mosquito larval habitats has unexpected consequences on malaria transmission. Proc Natl Acad Sci USA 103:17560–17563

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Walker ED, Giroux PY, Vulule J, Miller JR (2005) Ovipositional site selection by Anopheles gambiae: influences of substrate moisture and texture. Med Vet Entomol 19:442–450

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Miller JR, Chen S, Vulule JM, Walker ED (2006) Anopheles gambiae (Diptera: Culicidae) oviposition in response to agarose media and cultured bacterial volatiles. J Med Entomol 43:498–504

    Article  PubMed  Google Scholar 

  • Jacobson M, Ohinta K, Chambers DL, Jones WA, Fujimoto MS (1973) Insect sex attractants. 13. Isolation, identification and synthesis of sex pheromones of the male Mediterranean fruit fly. J Med Chem 16:248–251

    Article  CAS  PubMed  Google Scholar 

  • Kiflawi M, Blaustein L, Mengel M (2003) Oviposition habitat selection by the mosquito Culiseta longiareolata in response to risk of predation and conspecific larval density. Ecol Entomol 28:168–173

    Article  Google Scholar 

  • Knols BGJ, Sumba LA, Guda TO, Deng AL, Hassanali A, Beier JC (2004) Mediation of oviposition site selection in the Africa malaria mosquito Anopheles gambiae (Diptera: Culicidae) by semiochemicals of microbial origin. Int J Trop Insect Sci 24:260–265

    Google Scholar 

  • Kramer WL, Mulla MS (1979) Oviposition attractants and repellents of mosquitoes: oviposition responses of Culex mosquitoes to organic infusions. Environ Entomol 8:1111–1117

    Google Scholar 

  • LeMenach A, McKenzie FE, Flahault A, Smith DL (2005) The unexpected importance of mosquito oviposition behaviour for malaria: non-productive larval habitats can be sources for malaria transmission. Malar J 4:23

    Article  Google Scholar 

  • McCrae AWR (1984) Oviposition by African malaria vector mosquitoes II: Effect of site tone, water type and conspecific immatures on target selection by freshwater Anopheles gambiae Giles, sensu lato. Ann Trop Med Parasitol 78:307–318

    CAS  PubMed  Google Scholar 

  • McCrae AWR (1998) Oviposition site selection and the fate of eggs in fresh water Anopheles gambiae Giles sensu lato (Culicidae). Oxford, UK, p 140

    Google Scholar 

  • Millar JR, Roelofs WL (1977) Sex pheromone titer correlated with pheromone gland development and age in the redbanded leafroller moth, Argyrotaenia velutiana. Ann Ent Soc Am 70:136–139

    Google Scholar 

  • Millar JG, Chaney JD, Mulla MS (1992) Identification of oviposition attractants for Culex quinquefasciatus from fermented Bermuda grass infusions. J Am Mosq Control Assoc 8:11–17

    CAS  PubMed  Google Scholar 

  • Navarro DMAF, de Olivera PES, Potting RPJ, Britto AC, Fital SJ, Santana AEG (2003) The oviposition attractant or repellent effects of different water types on oviposition in Aedes aegypti L. (Diptera: Culicidae). J Appl Entomol 127:46–50

    Article  Google Scholar 

  • Onyabe D, Roitberg BD (1997) The effect of conspecifics on the oviposition site selection and oviposition behaviour in Aedes togi (Theobald) (Diptera: Culicidae). Can Entomol 129:1173–1176

    Article  Google Scholar 

  • Perry AS, Fay RW (1967) Correlation of chemical constitution and physical properties of fatty acid esters with oviposition response of Aedes aegypti. Mosq News 27:175–183

    Google Scholar 

  • Pickett JA, Woodcock CM (1996) The role of olfaction in oviposition site location and in the avoidance of unsuitable hosts. Olfaction in mosquito host interactions. Chichester, England, Wiley

    Google Scholar 

  • Priesner E, Jacobson M, Bestman HJ (1977) Structure response relationships in noctuid sex pheromone reception. An introductory report. Z Naturfosch Teil C 30:283–293

    Google Scholar 

  • Ranson H, rossiter L, Ortelli F, Jesen B, Wang X, Roth CW, Collins FH, Hemingway J (2001) Identification of a novel class of insect glutathione S-transferase involved in resistance to DDT in the malaria vector Anopheles gambiae. Biochem J 359:295–304

    Article  CAS  PubMed  Google Scholar 

  • Rejmankova E, Pope K, Roberts D, Lege M, Andre R, Greico J, Alonzo Y (1996) Anopheles albimanus (Diptera: Culicidae) and Cyanobacteria: an example of larval habitat selection. Environ Entomol 25:1065–1067

    Google Scholar 

  • Sharma KR, Seenivasagan T, Rao AN, Ganesan K, Agarwal OP, Malhotra RC, Prakash S (2008) Oviposition responses of Aedes aegypti and Aedes albopictus to certain fatty acid esters. Parasitol Res. doi:10.1007/s00436-008-1094-1

  • Spencer M, Blaustein L, Cohen JE (2002) Ovipositional habitat selection by mosquitoes (Culiseta longiareolata) and consequences for population size. Ecol 82:669–679

    Article  Google Scholar 

  • Sumba LA, Guda TO, Deng AL, Hassanali A, Beier JC, Knols BGJ (2004) Mediation of oviposition site selection in the African malaria mosquito Anopheles gambiae (Diptera: Culicidae) by semiochemicals of microbial origin. Int J Trop Insect Sci 24:260–265

    Google Scholar 

  • Takken W, Knols BGJ (1999) Odour mediated behaviour of Afrotropical malaria mosquitoes. Ann Rev Entomol 35:636–645

    Google Scholar 

  • Trexler JD, Apperson CS, Schal C (1998) Laboratory and field evaluations of oviposition responses of Aedes albopictus and Aedes triseriatus (Diptera: Culicidae) to oak leaf infusions. J Med Entomol 35:967–977

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. R. Vijayaraghavan, Director, Defence Research and Development Establishment for his help in statistical analysis and encouragement during this investigation. This work is funded by the Project DRDE-183 of our Establishment. Also, our thanks are due to all members of Entomology Division for their help in maintaining the mosquito culture for bio-evaluation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Seenivasagan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, K.R., Seenivasagan, T., Rao, A.N. et al. Mediation of oviposition responses in the malaria mosquito Anopheles stephensi Liston by certain fatty acid esters. Parasitol Res 104, 281–286 (2009). https://doi.org/10.1007/s00436-008-1189-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-008-1189-8

Keywords

Navigation