Skip to main content

Advertisement

Log in

The dual role and mutual dependence of heme/HO-1/Bach1 axis in the carcinogenic and anti-carcinogenic intersection

  • Review
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Introduction

In physiological concentrations, heme is nontoxic to the cell and is essential for cell survival and proliferation. Increasing intracellular heme concentrations beyond normal levels, however, will lead to carcinogenesis and facilitate the survival of tumor cells. Simultaneously, heme in an abnormally high quantity is also a potent inducer of tumor cell death, contributing to its ability to generate oxidative stress on the cells by boosting oxidative phosphorylation and suppressing tumors through ferroptosis. During tumorigenesis and progression, therefore, heme works as a double-edged sword. Heme oxygenase 1 (HO-1) is the rate-limiting enzyme in heme catabolism, which converts heme into physiologically active catabolites of carbon monoxide (CO), biliverdin, and ferrous iron (Fe2+). HO-1 maintains redox equilibrium in healthy cells and functions as a carcinogenesis inhibitor. It is widely recognized that HO-1 is involved in the adaptive response to cellular stress and the anti-inflammation effect. Notably, its expression level in cancer cells corresponds with tumor growth, aggressiveness, metastasis, and angiogenesis. Besides, heme-binding transcription factor BTB and CNC homology 1 (Bach1) play a critical regulatory role in heme homeostasis, oxidative stress and senescence, cell cycle, angiogenesis, immune cell differentiation, and autoimmune disorders. Moreover, it was found that Bach1 influences cancer cells' metabolism and metastatic capacity. Bach1 controls heme level by adjusting HO-1 expression, establishing a negative feedback loop.

Materials and methods

Herein, the authors review recent studies on heme, HO-1, and Bach1 in cancer. Specifically, they cover the following areas: (1) the carcinogenic and anticarcinogenic aspects of heme; (2) the carcinogenic and anticarcinogenic aspects of HO-1; (3) the carcinogenic and anticarcinogenic aspects of Bach1; (4) the interactions of the heme/HO-1/Bach1 axis involved in tumor progression.

Conclusion

This review summarized the literature about the dual role of the heme/HO-1/Bach1 axis and their mutual dependence in the carcinogenesis and anti-carcinogenesis intersection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abraham NG, Kappas A (2008) Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev 60:79–127

    Article  CAS  Google Scholar 

  • Ahmad IM, Dafferner AJ, O’Connell KA et al (2021) Heme oxygenase-1 inhibition potentiates the effects of Nab-paclitaxel-gemcitabine and modulates the tumor microenvironment in pancreatic ductal adenocarcinoma. Cancers (basel) 13:2264

    Article  CAS  Google Scholar 

  • Alaluf E, Vokaer B, Detavernier A et al (2020) Heme oxygenase-1 orchestrates the immunosuppressive program of tumor-associated macrophages. JCI Insight 5(11):e133929

    Google Scholar 

  • Alaoui-Jamali MA, Bismar TA, Gupta A et al (2009) A novel experimental heme oxygenase-1-targeted therapy for hormone-refractory prostate cancer. Cancer Res 69:8017–8024

    Article  CAS  Google Scholar 

  • Andres NC, Fermento ME, Gandini NA et al (2014) Heme oxygenase-1 has antitumoral effects in colorectal cancer: involvement of p53. Exp Mol Pathol 97:321–331

    Article  CAS  Google Scholar 

  • Anselmino N, Starbuck M, Labanca E et al (2020) Heme oxygenase-1 is a pivotal modulator of bone turnover and remodeling: molecular implications for prostate cancer bone metastasis. Antioxid Redox Signal 32:1243–1258

    Article  CAS  Google Scholar 

  • Baker HM, Anderson BF, Baker EN (2003) Dealing with iron: common structural principles in proteins that transport iron and heme. Proc Natl Acad Sci USA 100:3579–3583

    Article  CAS  Google Scholar 

  • Balogh E, Chowdhury A, Ababneh H et al (2021) Heme-mediated activation of the Nrf2/HO-1 axis attenuates calcification of valve interstitial cells. Biomedicines 9:427

    Article  CAS  Google Scholar 

  • Banerjee P, Basu A, Wegiel B et al (2012) Heme oxygenase-1 promotes survival of renal cancer cells through modulation of apoptosis- and autophagy-regulating molecules. J Biol Chem 287:32113–32123

    Article  CAS  Google Scholar 

  • Becker JC, Fukui H, Imai Y et al (2007) Colonic expression of heme oxygenase-1 is associated with a better long-term survival in patients with colorectal cancer. Scand J Gastroenterol 42:852–858

    Article  CAS  Google Scholar 

  • Berberat PO, Dambrauskas Z, Gulbinas A et al (2005) Inhibition of heme oxygenase-1 increases responsiveness of pancreatic cancer cells to anticancer treatment. Clin Cancer Res 11:3790–3798

    Article  CAS  Google Scholar 

  • Bie CQ, Chen YF, Tang HJ et al (2022) Insulin-like growth factor 1 receptor drives hepatocellular carcinoma growth and invasion by activating Stat3-Midkine-Stat3 loop. Dig Dis Sci 67:569–584

    Article  CAS  Google Scholar 

  • Biffi G, Tannahill D, Miller J et al (2014) Elevated levels of G-quadruplex formation in human stomach and liver cancer tissues. PLoS One 9:e102711

    Article  Google Scholar 

  • Birsoy K, Possemato R, Lorbeer FK et al (2014) Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature 508:108–112

    Article  CAS  Google Scholar 

  • Canesin G, Di Ruscio A, Li ML et al (2020a) Scavenging of labile heme by hemopexin is a key checkpoint in cancer growth and metastases. Cell Rep 32:108181

    Article  CAS  Google Scholar 

  • Canesin G, Hejazi SM, Swanson KD et al (2020b) Heme-derived metabolic signals dictate immune responses. Front Immunol 11:66

    Article  CAS  Google Scholar 

  • Chau LY (2015) Heme oxygenase-1: emerging target of cancer therapy. J Biomed Sci 22:1–7

    Article  CAS  Google Scholar 

  • Chen JS, Huang XH, Wang Q et al (2010) FAK is involved in invasion and metastasis of hepatocellular carcinoma. Clin Exp Metas 27:71–82

    Article  Google Scholar 

  • Chen BJ, Zhao JW, Zhang DH et al (2022) Immunotherapy of cancer by targeting regulatory T cells. Int Immunopharmacol 104:108469

    Article  CAS  Google Scholar 

  • Chiabrando D, Vinchi F, Fiorito V et al (2014) Heme in pathophysiology: a matter of scavenging, metabolism and trafficking across cell membranes. Front Pharmacol 5:61

    Article  Google Scholar 

  • Chiang SK, Chen SE, Chang LC (2018) A dual role of heme oxygenase-1 in cancer cells. Int J Mol Sci 20:39

    Article  Google Scholar 

  • Chiang SK, Chen SE, Chang LC (2021) The role of HO-1 and its crosstalk with oxidative stress in cancer cell survival. Cells 10:2401

    Article  CAS  Google Scholar 

  • Ciaffaglione V, Intagliata S, Pittala V et al (2020) New arylethanolimidazole derivatives as HO-1 inhibitors with cytotoxicity against MCF-7 breast cancer cells. Int J Mol Sci 21:1923

    Article  CAS  Google Scholar 

  • Consonni FM, Bleve A, Totaro MG et al (2021) Heme catabolism by tumor-associated macrophages controls metastasis formation. Nat Immunol 22:595–606

    Article  CAS  Google Scholar 

  • Davies KJA, Forman HJ (2019) Does Bach1 & c-Myc dependent redox dysregulation of Nrf2 & adaptive homeostasis decrease cancer risk in ageing? Free Radical Biol Med 134:708–714

    Article  CAS  Google Scholar 

  • Davudian S, Mansoori B, Shajari N et al (2016a) BACH1, the master regulator gene: a novel candidate target for cancer therapy. Gene 588:30–37

    Article  CAS  Google Scholar 

  • Davudian S, Shajari N, Kazemi T et al (2016b) BACH1 silencing by siRNA inhibits migration of HT-29 colon cancer cells through reduction of metastasis-related genes. Biomed Pharmacother 84:191–198

    Article  CAS  Google Scholar 

  • Dawson JC, Serrels A, Stupack DG et al (2021) Targeting FAK in anticancer combination therapies. Nat Rev Cancer 21:313–324

    Article  CAS  Google Scholar 

  • de Vogel J, van Eck WB, Sesink AL et al (2008) Dietary heme injures surface epithelium resulting in hyperproliferation, inhibition of apoptosis and crypt hyperplasia in rat colon. Carcinogenesis 29:398–403

    Article  Google Scholar 

  • Deininger MH, Meyermann R, Trautmann K et al (2000) Heme oxygenase (HO)-1 expressing macrophages/microglial cells accumulate during oligodendroglioma progression. Brain Res 882:1–8

    Article  CAS  Google Scholar 

  • Deng R, Wang SM, Yin T et al (2013) Inhibition of tumor growth and alteration of associated macrophage cell type by an HO-1 inhibitor in breast carcinoma-bearing mice. Oncol Res 20:473–482

    Article  CAS  Google Scholar 

  • Dennery PA (2014a) Signaling function of heme oxygenase proteins. Antioxid Redox Signal 20:1743–1753

    Article  CAS  Google Scholar 

  • Dennery PA (2014b) Heme oxygenase in neonatal lung injury and repair. Antioxid Redox Signal 21:1881–1892

    Article  CAS  Google Scholar 

  • Dey M, Chang AL, Wainwright DA et al (2014) Heme oxygenase-1 protects regulatory T cells from hypoxia-induced cellular stress in an experimental mouse brain tumor model. J Neuroimmunol 266:33–42

    Article  CAS  Google Scholar 

  • Dey S, Sayers CM, Verginadis II et al (2015) ATF4-dependent induction of heme oxygenase 1 prevents anoikis and promotes metastasis. J Clin Invest 125:2592–2608

    Article  Google Scholar 

  • Dey S, Ashrafi A, Vidal C et al (2022) Heme sequestration effectively suppresses the development and progression of both lung adenocarcinoma and squamous cell carcinoma. Mol Cancer Res 20:139–149

    Article  CAS  Google Scholar 

  • Di Biase S, Longo VD (2016) Fasting-induced differential stress sensitization in cancer treatment. Mol Cell Oncol 3:e1117701

    Article  Google Scholar 

  • Di Biase S, Lee C, Brandhorst S et al (2016) Fasting-mimicking diet reduces HO-1 to promote T cell-mediated tumor cytotoxicity. Cancer Cell 30:136–146

    Article  Google Scholar 

  • Dohi Y, Ikura T, Hoshikawa Y et al (2008) Bach1 inhibits oxidative stress-induced cellular senescence by impeding p53 function on chromatin. Nat Struct Mol Biol 15:1246–1254

    Article  CAS  Google Scholar 

  • Dore S, Takahashi M, Ferris CD et al (1999) Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury. Proc Natl Acad Sci USA 96:2445–2450

    Article  CAS  Google Scholar 

  • Dore S, Goto S, Sampei K et al (2000) Heme oxygenase-2 acts to prevent neuronal death in brain cultures and following transient cerebral ischemia. Neuroscience 99:587–592

    Article  CAS  Google Scholar 

  • Dulak J, Jozkowicz A, Foresti R et al (2002) Heme oxygenase activity modulates vascular endothelial growth factor synthesis in vascular smooth muscle cells. Antioxid Redox Signal 4:229–240

    Article  CAS  Google Scholar 

  • El Andaloussi A, Lesniak MS (2007) CD4+ CD25+ FoxP3+ T-cell infiltration and heme oxygenase-1 expression correlate with tumor grade in human gliomas. J Neurooncol 83:145–152

    Article  Google Scholar 

  • Elbasateeny SS, Yassin MA, Mokhtar MM et al (2022) Prognostic implications of MALAT1 and BACH1 expression and their correlation with CTCs and Mo-MDSCs in triple negative breast cancer and surgical management options. Int J Breast Cancer 2022:8096764

    Article  Google Scholar 

  • Fang MG, Ou JH, Hutchinson L et al (2014) The BRAF oncoprotein functions through the transcriptional repressor MAFG to mediate the CpG island methylator phenotype. Mol Cell 55:904–915

    Article  CAS  Google Scholar 

  • Fang MG, Hutchinson L, Deng A et al (2016) Common BRAF(V600E)-directed pathway mediates widespread epigenetic silencing in colorectal cancer and melanoma. Proc Natl Acad Sci USA 113:1250–1255

    Article  CAS  Google Scholar 

  • Fiorito V, Chiabrando D, Petrillo S et al (2020) The multifaceted role of heme in cancer. Front Oncol 9:1540

    Article  Google Scholar 

  • Foresti R, Bains SK, Pitchumony TS et al (2013) Small molecule activators of the Nrf2-HO-1 antioxidant axis modulate heme metabolism and inflammation in BV2 microglia cells. Pharmacol Res 76:132–148

    Article  CAS  Google Scholar 

  • Gamage SMK, Lee KTW, Dissabandara DLO et al (2021) Dual role of heme iron in cancer; promotor of carcinogenesis and an inducer of tumour suppression. Exp Mol Pathol 120:104642

    Article  CAS  Google Scholar 

  • Gandini NA, Fermento ME, Salomon DG et al (2012) Nuclear localization of heme oxygenase-1 is associated with tumor progression of head and neck squamous cell carcinomas. Exp Mol Pathol 93:237–245

    Article  CAS  Google Scholar 

  • Gandini NA, Fermento ME, Salomon DG et al (2014) Heme oxygenase-1 expression in human gliomas and its correlation with poor prognosis in patients with astrocytoma. Tumour Biol 35:2803–2815

    Article  CAS  Google Scholar 

  • Gandini NA, Alonso EN, Fermento ME et al (2019) Heme oxygenase-1 has an antitumor role in breast cancer. Antioxid Redox Signal 30:2030–2049

    Article  CAS  Google Scholar 

  • Davudian S, Shajari N, Kazemi T et al (2016) BACH1 silencing by siRNA inhibits migration of HT-29 colon cancer cells through reduction of metastasis-related genes. Biomed Pharmacother 84:191-198

  • Gautier EL, Shay T, Miller J et al (2012) Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol 13:1118–1128

    Article  CAS  Google Scholar 

  • Glei M, Klenow S, Sauer J et al (2006) Hemoglobin and hemin induce DNA damage in human colon tumor cells HT29 clone 19A and in primary human colonocytes. Mutat Res 594:162–171

    Article  CAS  Google Scholar 

  • Gonzalez-Donquiles C, Alonso-Molero J, Fernandez-Villa T et al (2017) The NRF2 transcription factor plays a dual role in colorectal cancer: a systematic review. PLoS One 12:e0177549

    Article  CAS  Google Scholar 

  • Gozzelino R, Jeney V, Soares MP (2010) Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol 50:323–354

    Article  CAS  Google Scholar 

  • Gueron G, Giudice J, Valacco P et al (2014) Heme-oxygenase-1 implications in cell morphology and the adhesive behavior of prostate cancer cells. Oncotarget 5:4087–4102

    Article  Google Scholar 

  • Halin Bergstrom S, Nilsson M, Adamo H et al (2016) Extratumoral heme oxygenase-1 (HO-1) expressing macrophages likely promote primary and metastatic prostate tumor growth. PLoS One 11:e0157280

    Article  Google Scholar 

  • Han ZS, Varadharaj S, Giedt RJ et al (2009) Mitochondria-derived reactive oxygen species mediate heme oxygenase-1 expression in sheared endothelial cells. J Pharmacol Exp Ther 329:94–101

    Article  CAS  Google Scholar 

  • Han W, Zhang Y, Niu C et al (2019) BTB and CNC homology 1 (Bach1) promotes human ovarian cancer cell metastasis by HMGA2-mediated epithelial-mesenchymal transition. Cancer Lett 445:45–56

    Article  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  Google Scholar 

  • Hao NB, Lu MH, Fan YH et al (2012) Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol 2012:948098

    Article  Google Scholar 

  • Hao S, Zhu X, Liu Z et al (2021) Chronic intermittent hypoxia promoted lung cancer stem cell-like properties via enhancing Bach1 expression. Respir Res 22:58

    Article  CAS  Google Scholar 

  • He MH, Nitti M, Piras S et al (2015) Heme oxygenase-1-derived bilirubin protects endothelial cells against high glucose-induced damage. Free Radical Biol Med 89:91–98

    Article  CAS  Google Scholar 

  • Hecht JL, Janikova M, Choudhury R et al (2022) Labile heme and heme oxygenase-1 maintain tumor-permissive niche for endometriosis-associated ovarian cancer. Cancers (basel) 14:2242

    Article  CAS  Google Scholar 

  • Heyninck K, Sabbe L, Chirumamilla CS et al (2016) Withaferin A induces heme oxygenase (HO-1) expression in endothelial cells via activation of the Keap1/Nrf2 pathway. Biochem Pharmacol 109:48–61

    Article  CAS  Google Scholar 

  • Hintze KJ, Katoh Y, Igarashi K et al (2007) Bach1 repression of ferritin and thioredoxin reductase1 is heme-sensitive in cells and in vitro and coordinates expression with heme oxygenase1, beta-globin, and NADP(H) quinone (oxido) reductase1. J Biol Chem 282:34365–34371

    Article  CAS  Google Scholar 

  • Hirai K, Sasahira T, Ohmori H et al (2007) Inhibition of heme oxygenase-1 by zinc protoporphyrin IX reduces tumor growth of LL/2 lung cancer in C57BL mice. Int J Cancer 120:500–505

    Article  CAS  Google Scholar 

  • Hirayama A, Kami K, Sugimoto M et al (2009) Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res 69:4918–4925

    Article  CAS  Google Scholar 

  • Hooda J, Cadinu D, Alam MM et al (2013) Enhanced heme function and mitochondrial respiration promote the progression of lung cancer cells. PLoS One 8:e63402

    Article  Google Scholar 

  • Hoshino H, Kobayashi A, Yoshida M et al (2000) Oxidative stress abolishes leptomycin B-sensitive nuclear export of transcription repressor Bach2 that counteracts activation of Maf recognition element. J Biol Chem 275:15370–15376

    Article  CAS  Google Scholar 

  • Hsu FF, Yeh CT, Sun YJ et al (2015) Signal peptide peptidase-mediated nuclear localization of heme oxygenase-1 promotes cancer cell proliferation and invasion independent of its enzymatic activity. Oncogene 34:2410–2411

    Article  CAS  Google Scholar 

  • Hsu FF, Chiang MT, Li FA et al (2017) Acetylation is essential for nuclear heme oxygenase-1-enhanced tumor growth and invasiveness. Oncogene 36:6805–6814

    Article  CAS  Google Scholar 

  • Hua H, Kong QB, Yin J et al (2020) Insulin-like growth factor receptor signaling in tumorigenesis and drug resistance: a challenge for cancer therapy. J Hematol Oncol 13:1–17

    Article  CAS  Google Scholar 

  • Huang J, Wan B, Li S et al (2021) High expression of heme oxygenase-1 in tumor-associated macrophages characterizes a poor-prognosis subtype in nasopharyngeal carcinoma. Aging (Albany NY) 13:5674–5685

    Article  CAS  Google Scholar 

  • Huang SL, Huang ZC, Zhang CJ et al (2022) LncRNA SNHG5 promotes the glycolysis and proliferation of breast cancer cell through regulating BACH1 via targeting miR-299. Breast Cancer 29:65–76

    Article  Google Scholar 

  • Igarashi K, Ochiai K, Itoh-Nakadai A et al (2014) Orchestration of plasma cell differentiation by Bach2 and its gene regulatory network. Immunol Rev 261:116–125

    Article  CAS  Google Scholar 

  • Igarashi K, Kurosaki T, Roychoudhuri R (2017) BACH transcription factors in innate and adaptive immunity. Nat Rev Immunol 17:437–450

    Article  CAS  Google Scholar 

  • Ishikawa S, Tamaki S, Ohata M et al (2010) Heme induces DNA damage and hyperproliferation of colonic epithelial cells via hydrogen peroxide produced by heme oxygenase: a possible mechanism of heme-induced colon cancer. Mol Nutr Food Res 54:1182–1191

    CAS  Google Scholar 

  • Jiang L, Yin M, Wei X et al (2015) Bach1 represses Wnt/beta-catenin signaling and angiogenesis. Circ Res 117:364–375

    Article  CAS  Google Scholar 

  • Jiang P, Li F, Liu Z et al (2021a) BTB and CNC homology 1 (Bach1) induces lung cancer stem cell phenotypes by stimulating CD44 expression. Respir Res 22:320

    Article  CAS  Google Scholar 

  • Jiang XJ, Stockwell BR, Conrad M (2021b) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22:266–282

    Article  Google Scholar 

  • Jozkowicz A, Huk H, Nigisch A et al (2003) Heme oxygenase and angiogenic activity of endothelial cells: Stimulation by carbon monoxide and inhibition by tin protoporphyrin-IX. Antioxid Redox Signal 5:155–162

    Article  CAS  Google Scholar 

  • Jun SY, Hong SM, Bae YK et al (2018) Clinicopathological and prognostic significance of heme oxygenase-1 expression in small intestinal adenocarcinomas. Pathol Int 68:294–300

    Article  CAS  Google Scholar 

  • Kagawa Y, Elez E, Garcia-Foncillas J et al (2021) Combined analysis of concordance between liquid and tumor tissue biopsies for RAS mutations in colorectal cancer with a single metastasis site: the METABEAM study. Clin Cancer Res 27:2515–2522

    Article  CAS  Google Scholar 

  • Kim EJ, Kim YJ, Lee HI et al (2020a) NRF2 knockdown resensitizes 5-fluorouracil-resistant pancreatic cancer cells by suppressing HO-1 and ABCG2 expression. Int J Mol Sci 21:4646

    Article  CAS  Google Scholar 

  • Kim SH, Saeidi S, Zhong XC et al (2020b) Breast cancer cell debris diminishes therapeutic efficacy through heme oxygenase-1-mediated inactivation of M1-like tumor-associated macrophages. Neoplasia 22:606–616

    Article  CAS  Google Scholar 

  • Kim SH, Kim SJ, Park J et al (2021) Reprograming of tumor-associated macrophages in breast tumor-bearing mice under chemotherapy by targeting heme oxygenase-1. Antioxidants (basel) 10:470

    Article  CAS  Google Scholar 

  • Kozakowska M, Dobrowolska-Glazar B, Okon K et al (2016) Preliminary analysis of the expression of selected proangiogenic and antioxidant genes and microRNAs in patients with non-muscle-invasive bladder cancer. J Clin Med 5:29

    Article  Google Scholar 

  • Kutty RK, Nagineni CN, Kutty G et al (1994) Increased expression of heme oxygenase-1 in human retinal pigment epithelial cells by transforming growth factor-beta. J Cell Physiol 159:371–378

    Article  CAS  Google Scholar 

  • Lee J (2019) Effective breast cancer combination therapy targeting BACH1 and mitochondrial metabolism. Nature 568:254–258

    Article  CAS  Google Scholar 

  • Lee U, Frankenberger C, Yun J et al (2013) A prognostic gene signature for metastasis-free survival of triple negative breast cancer patients. PLoS One 8:e82125

    Article  Google Scholar 

  • Lee J, Lee J, Farquhar KS et al (2014) Network of mutually repressive metastasis regulators can promote cell heterogeneity and metastatic transitions. Proc Natl Acad Sci USA 111:E364–E373

    CAS  Google Scholar 

  • Lee BY, Timpson P, Horvath LG et al (2015) FAK signaling in human cancer as a target for therapeutics. Pharmacol Ther 146:132–149

    Article  CAS  Google Scholar 

  • Lee GR, Shaefi S, Otterbein LE (2019a) HO-1 and CD39: it takes two to protect the realm. Front Immunol 10:1765

    Article  CAS  Google Scholar 

  • Lee J, Yesilkanal AE, Wynne JP et al (2019b) Effective breast cancer combination therapy targeting BACH1 and mitochondrial metabolism. Nature 568:254–258

    Article  CAS  Google Scholar 

  • Li C, Stocker R (2009) Heme oxygenase and iron: from bacteria to humans. Redox Rep 14:95–101

    Article  CAS  Google Scholar 

  • Li Y, Fu XH, Yuan JQ et al (2015) Colorectal cancer: using blood samples and tumor tissue to detect K-ras mutations. Expert Rev Anticancer Ther 15:715–725

    Article  CAS  Google Scholar 

  • Li Q, Liu Q, Cheng W et al (2019) Heme oxygenase-1 inhibits tumor metastasis mediated by Notch1 pathway in murine mammary carcinoma. Oncol Res 27:643–651

    Article  CAS  Google Scholar 

  • Li Q, Huang HJ, Ma J et al (2020) RAS/RAF mutations in tumor samples and cell-free DNA from plasma and bone marrow aspirates in multiple myeloma patients. J Cancer 11:3543–3550

    Article  CAS  Google Scholar 

  • Li Volti G, Tibullo D, Vanella L et al (2017) The heme oxygenase system in hematological malignancies. Antioxid Redox Signal 27:363–377

    Article  CAS  Google Scholar 

  • Liang YJ, Wu H, Lei R et al (2012) Transcriptional network analysis identifies BACH1 as a master regulator of breast cancer bone metastasis. J Biol Chem 287:33533–33544

    Article  CAS  Google Scholar 

  • Lignitto L, LeBoeuf SE, Homer H et al (2019) Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of Bach1. Cell 178:316–329

    Article  CAS  Google Scholar 

  • Lin Q, Weis S, Yang G et al (2007) Heme oxygenase-1 protein localizes to the nucleus and activates transcription factors important in oxidative stress. J Biol Chem 282:20621–20633

    Article  CAS  Google Scholar 

  • Lin CW, Shen SC, Hou WC et al (2008) Heme oxygenase-1 inhibits breast cancer invasion via suppressing the expression of matrix metalloproteinase-9. Mol Cancer Ther 7:1195–1206

    Article  CAS  Google Scholar 

  • Lin PH, Lan WM, Chau LY (2013) TRC8 suppresses tumorigenesis through targeting heme oxygenase-1 for ubiquitination and degradation. Oncogene 32:2325–2334

    Article  CAS  Google Scholar 

  • Lin HH, Chiang MT, Chang PC et al (2015) Myeloid heme oxygenase-1 promotes metastatic tumor colonization in mice. Cancer Sci 106:299–306

    Article  CAS  Google Scholar 

  • Lin CC, Lin WN, Cho RL et al (2020) Induction of HO-1 by mevastatin mediated via a Nox/ROS-dependent c-Src/PDGFRalpha/PI3K/Akt/Nrf2/ARE cascade suppresses TNF-alpha-induced lung inflammation. J Clin Med 9:226

    Article  CAS  Google Scholar 

  • Liu ZM, Chen GG, Ng EK et al (2004) Upregulation of heme oxygenase-1 and p21 confers resistance to apoptosis in human gastric cancer cells. Oncogene 23:503–513

    Article  CAS  Google Scholar 

  • Liu YS, Li HS, Qi DF et al (2014) Zinc protoporphyrin IX enhances chemotherapeutic response of hepatoma cells to cisplatin. World J Gastroenterol 20:8572–8582

    Article  Google Scholar 

  • Liu Z, Wang J, Chen H et al (2022) Uncovering BTB and CNC homology1 (BACH1) as a novel cancer therapeutic target. Front Genet 13:920911

    Article  CAS  Google Scholar 

  • Lo SS, Lin SC, Wu CW et al (2007) Heme oxygenase-1 gene promoter polymorphism is associated with risk of gastric adenocarcinoma and lymphovascular tumor invasion. Ann Surg Oncol 14:2250–2256

    Article  Google Scholar 

  • Loboda A, Jazwa A, Grochot-Przeczek A et al (2008) Heme oxygenase-1 and the vascular bed: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 10:1767–1812

    Article  CAS  Google Scholar 

  • Loboda A, Jozkowicz A, Dulak J (2015) HO-1/CO system in tumor growth, angiogenesis and metabolism Targeting HO-1 as an anti-tumor therapy. Vascul Pharmacol 74:11–22

    Article  CAS  Google Scholar 

  • Loboda A, Damulewicz M, Pyza E et al (2016) Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci 73:3221–3247

    Article  CAS  Google Scholar 

  • MacLeod AK, McMahon M, Plummer SM et al (2009) Characterization of the cancer chemopreventive NRF2-dependent gene battery in human keratinocytes: demonstration that the KEAP1-NRF2 pathway, and not the BACH1-NRF2 pathway, controls cytoprotection against electrophiles as well as redox-cycling compounds. Carcinogenesis 30:1571–1580

    Article  CAS  Google Scholar 

  • Mafra D, Alvarenga L, Cardozo L et al (2022) Inhibiting BTB domain and CNC homolog 1 (Bach1) as an alternative to increase Nrf2 activation in chronic diseases. Biochim Biophys Acta Gen Subj 130129

  • Maines MD (1988) Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J 2:2557–2568

    Article  CAS  Google Scholar 

  • Maines MD (1997) The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 37:517–554

    Article  CAS  Google Scholar 

  • Malla RR, Vasudevaraju P, Vempati RK et al (2022) Regulatory T cells: their role in triple-negative breast cancer progression and metastasis. Cancer 128:1171–1183

    Article  CAS  Google Scholar 

  • Mansoori B, Mohammadi A, Ghasabi M et al (2019) miR-142-3p as tumor suppressor miRNA in the regulation of tumorigenicity, invasion and migration of human breast cancer by targeting Bach-1 expression. J Cell Physiol 234:9816–9825

    Article  CAS  Google Scholar 

  • Marro S, Chiabrando D, Messana E et al (2010) Heme controls ferroportin1 (FPN1) transcription involving Bach1, Nrf2 and a MARE/ARE sequence motif at position-7007 of the FPN1 promoter. Haematol Hematol J 95:1261–1268

    Article  CAS  Google Scholar 

  • Mascaro M, Alonso EN, Alonso EG et al (2021) Nuclear localization of heme oxygenase-1 in pathophysiological conditions: does it explain the dual role in cancer? Antioxidants 10:87

    Article  CAS  Google Scholar 

  • Menegon S, Columbano A, Giordano S (2016) The dual roles of NRF2 in cancer. Trends Mol Med 22:578–593

    Article  CAS  Google Scholar 

  • Mense SM, Zhang L (2006) Heme: a versatile signaling molecule controlling the activities of diverse regulators ranging from transcription factors to MAP kinases. Cell Res 16:681–692

    Article  CAS  Google Scholar 

  • Miyake M, Fujimoto K, Anai S et al (2010) Clinical significance of heme oxygenase-1 expression in non-muscle-invasive bladder cancer. Urol Int 85:355–363

    Article  CAS  Google Scholar 

  • Miyake M, Fujimoto K, Anai S et al (2011) Heme oxygenase-1 promotes angiogenesis in urothelial carcinoma of the urinary bladder. Oncol Rep 25:653–660

    Article  CAS  Google Scholar 

  • Miyata Y, Kanda S, Mitsunari K et al (2014) Heme oxygenase-1 expression is associated with tumor aggressiveness and outcomes in patients with bladder cancer: a correlation with smoking intensity. Transl Res 164:468–476

    Article  CAS  Google Scholar 

  • Moon EJ, Giaccia A (2015) Dual roles of NRF2 in tumor prevention and progression: possible implications in cancer treatment. Free Radical Biol Med 79:292–299

    Article  CAS  Google Scholar 

  • Mucha O, Podkalicka P, Mikulski M et al (2019) Development and characterization of a new inhibitor of heme oxygenase activity for cancer treatment. Arch Biochem Biophys 671:130–142

    Article  CAS  Google Scholar 

  • Nakashima M, Watanabe M, Nakano K et al (2021) Differentiation of Hodgkin lymphoma cells by reactive oxygen species and regulation by heme oxygenase-1 through HIF-1alpha. Cancer Sci 112:2542–2555

    Article  CAS  Google Scholar 

  • Nemeth Z, Li M, Csizmadia E et al (2015) Heme oxygenase-1 in macrophages controls prostate cancer progression. Oncotarget 6:33675–33688

    Article  Google Scholar 

  • Nishizawa H, Matsumoto M, Shindo T et al (2020) Ferroptosis is controlled by the coordinated transcriptional regulation of glutathione and labile iron metabolism by the transcription factor BACH1. J Biol Chem 295:69–82

    Article  CAS  Google Scholar 

  • Nitti M, Piras S, Marinari UM et al (2017) HO-1 induction in cancer progression: a matter of cell adaptation. Antioxidants (basel) 6:29

    Article  Google Scholar 

  • Nitti M, Ivaldo C, Traverso N et al (2021) Clinical significance of heme oxygenase 1 in tumor progression. Antioxidants (basel) 10:789

    Article  CAS  Google Scholar 

  • Ogawa K, Sun J, Taketani S et al (2001) Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1. EMBO J 20:2835–2843

    Article  CAS  Google Scholar 

  • Ota K, Dohi Y, Brydun A et al (2011) Identification of senescence-associated genes and their networks under oxidative stress by the analysis of Bach1. Antioxid Redox Signal 14:2441–2451

    Article  CAS  Google Scholar 

  • Otterbein LE, Bach FH, Alam J et al (2000) Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 6:422–428

    Article  CAS  Google Scholar 

  • Otterbein LE, Soares MP, Yamashita K et al (2003) Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol 24:449–455

    Article  CAS  Google Scholar 

  • Oyake T, Itoh K, Motohashi H et al (1996) Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site. Mol Cell Biol 16:6083–6095

    Article  CAS  Google Scholar 

  • Padilla J, Lee J (2021) A novel therapeutic target, BACH1, regulates cancer metabolism. Cells 10:634

    Article  CAS  Google Scholar 

  • Pae HO, Choi BM, Oh GS et al (2004) Roles of heme oxygenase-1 in the antiproliferative and antiapoptotic effects of nitric oxide on Jurkat T cells. Mol Pharmacol 66:122–128

    Article  CAS  Google Scholar 

  • Pamplona A, Ferreira A, Balla J et al (2007) Heme oxygenase-1 and carbon monoxide suppress the pathogenesis of experimental cerebral malaria. Nat Med 13:703–710

    Article  CAS  Google Scholar 

  • Pittala V, Salerno L, Romeo G et al (2013) A focus on heme oxygenase-1 (HO-1) inhibitors. Curr Med Chem 20:3711–3732

    Article  CAS  Google Scholar 

  • Qin JJ, Cheng XD, Zhang J et al (2015) Dual roles and therapeutic potential of Keap1-Nrf2 pathway in pancreatic cancer: a systematic review. Cell Commun Signal 17:1–15

    Google Scholar 

  • Ryter SW (2019) Heme oxygenase-1/carbon monoxide as modulators of autophagy and inflammation. Arch Biochem Biophys 678:108186

    Article  CAS  Google Scholar 

  • Ryter SW, Alam J, Choi AMK (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 86:583–650

    Article  CAS  Google Scholar 

  • Ryter SW, Ma KC, Choi AMK (2018) Carbon monoxide in lung cell physiology and disease. Am J Physiol Cell Physiol 314:C211–C227

    Article  Google Scholar 

  • Sacca P, Meiss R, Casas G et al (2007) Nuclear translocation of haeme oxygenase-1 is associated to prostate cancer. Br J Cancer 97:1683–1689

    Article  CAS  Google Scholar 

  • Sacerdoti D, Colombrita C, Ghattas MH et al (2005) Heme oxygenase-1 transduction in endothelial cells causes downregulation of monocyte chemoattractant protein-1 and of genes involved in inflammation and growth. Cell Mol Biol (noisy-Le-Grand) 51:363–370

    CAS  Google Scholar 

  • Sanada Y, Tan SJO, Adachi N et al (2021) Pharmacological targeting of heme oxygenase-1 in osteoarthritis. Antioxidants (basel) 10:419

    Article  CAS  Google Scholar 

  • Sass G, Leukel P, Schmitz V et al (2008) Inhibition of heme oxygenase 1 expression by small interfering RNA decreases orthotopic tumor growth in livers of mice. Int J Cancer 123:1269–1277

    Article  CAS  Google Scholar 

  • Sato M, Matsumoto M, Saiki Y et al (2020) BACH1 promotes pancreatic cancer metastasis by repressing epithelial genes and enhancing epithelial-mesenchymal transition. Cancer Res 80:1279–1292

    Article  CAS  Google Scholar 

  • Schumacker PT (2015) Reactive oxygen species in cancer: a dance with the devil. Cancer Cell 27:156–157

    Article  CAS  Google Scholar 

  • Sedlak TW, Saleh M, Higginson DS et al (2009) Bilirubin and glutathione have complementary antioxidant and cytoprotective roles. Proc Natl Acad Sci USA 106:5171–5176

    Article  CAS  Google Scholar 

  • Segawa K, Igarashi K, Murayama K (2022) The Cys-Pro motifs in the intrinsically disordered regions of the transcription factor BACH1 mediate distinct and overlapping functions upon heme binding. FEBS Letters 596:1576–1585

    Article  CAS  Google Scholar 

  • Serpero LD, Frigiola A, Gazzolo D (2012) Human milk and formulae: neurotrophic and new biological factors. Early Human Dev 88:S9–S12

    Article  CAS  Google Scholar 

  • Sferrazzo G, Di Rosa M, Barone E et al (2020) Heme oxygenase-1 in central nervous system malignancies. J Clin Med 9:1562

    Article  CAS  Google Scholar 

  • Shajari N, Davudian S, Kazemi T et al (2018) Silencing of BACH1 inhibits invasion and migration of prostate cancer cells by altering metastasis-related gene expression. Artif Cells Nanomed Biotechnol 46:1495–1504

    Article  CAS  Google Scholar 

  • Shen J, Sheng XP, Chang ZN et al (2014) Iron metabolism regulates p53 signaling through direct heme-p53 interaction and modulation of p53 localization, stability, and function. Cell Rep 7:180–193

    Article  CAS  Google Scholar 

  • Signorelli SS, Li Volsi G, Fiore V et al (2016) Plasma heme oxygenase-1 is decreased in peripheral artery disease patients. Mol Med Rep 14:3459–3463

    Article  CAS  Google Scholar 

  • Skrzypek K, Tertil M, Golda S et al (2013) Interplay between heme oxygenase-1 and miR-378 affects non-small cell lung carcinoma growth, vascularization, and metastasis. Antioxid Redox Signal 19:644–660

    Article  CAS  Google Scholar 

  • Sohoni S, Ghosh P, Wang T et al (2019) Elevated heme synthesis and uptake underpin intensified oxidative metabolism and tumorigenic functions in non-small cell lung cancer cells. Cancer Res 79:2511–2525

    Article  CAS  Google Scholar 

  • Song X, Long D (2020) Nrf2 and ferroptosis: a new research direction for neurodegenerative diseases. Front Neurosci 14:267

    Article  Google Scholar 

  • Srisook K, Kim C, Cha YN (2005) Molecular mechanisms involved in enhancing HO-1 expression: de-repression by heme and activation by Nrf2, the “one-two” punch. Antioxid Redox Signal 7:1674–1687

    Article  CAS  Google Scholar 

  • Stockwell BR, Jiang XJ, Gu W (2020) Emerging mechanisms and disease relevance of ferroptosis. Trends Cell Biol 30:478–490

    Article  CAS  Google Scholar 

  • Sun JY, Hoshino H, Takaku K et al (2002) Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene. EMBO J 21:5216–5224

    Article  CAS  Google Scholar 

  • Sun J, Brand M, Zenke Y et al (2004) Heme regulates the dynamic exchange of Bach1 and NF-E2-related factors in the Maf transcription factor network. Proc Natl Acad Sci U S A 101:1461–1466

    Article  CAS  Google Scholar 

  • Sun X, Wang S, Gai J et al (2019) SIRT5 promotes cisplatin resistance in ovarian cancer by suppressing DNA damage in a ROS-dependent manner via regulation of the Nrf2/HO-1 pathway. Front Oncol 9:754

    Article  Google Scholar 

  • Sunamura M, Duda DG, Ghattas MH et al (2003) Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer. Angiogenesis 6:15–24

    Article  CAS  Google Scholar 

  • Suzuki H, Tashiro S, Sun J et al (2003) Cadmium induces nuclear export of Bach1, a transcriptional repressor of heme oxygenase-1 gene. J Biol Chem 278:49246–49253

    Article  CAS  Google Scholar 

  • Suzuki H, Tashiro S, Hira S et al (2004) Heme regulates gene expression by triggering Crm1-dependent nuclear export of Bach1. EMBO J 23:2544–2553

    Article  CAS  Google Scholar 

  • Tan MK, Lim HJ, Bennett EJ et al (2013) Parallel SCF adaptor capture proteomics reveals a role for SCFFBXL17 in NRF2 activation via BACH1 repressor turnover. Mol Cell 52:9–24

    Article  CAS  Google Scholar 

  • Tenhunen R, Marver HS, Schmid R (1968) The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci USA 61:748–755

    Article  CAS  Google Scholar 

  • Tibullo D, Barbagallo I, Giallongo C et al (2013) Nuclear translocation of heme oxygenase-1 confers resistance to imatinib in chronic myeloid leukemia cells. Curr Pharm Des 19:2765–2770

    Article  CAS  Google Scholar 

  • Tolosano E, Fagoonee S, Morello N et al (2010) Heme scavenging and the other facets of hemopexin. Antioxid Redox Signal 12:305–320

    Article  CAS  Google Scholar 

  • Tsai JR, Wang HM, Liu PL et al (2012) High expression of heme oxygenase-1 is associated with tumor invasiveness and poor clinical outcome in non-small cell lung cancer patients. Cell Oncol 35:461–471

    Article  CAS  Google Scholar 

  • Tsuji MH, Yanagawa T, Iwasa S et al (1999) Heme oxygenase-1 expression in oral squamous cell carcinoma as involved in lymph node metastasis. Cancer Lett 138:53–59

    Article  CAS  Google Scholar 

  • Vanella L, Barbagallo I, Tibullo D et al (2016) The non-canonical functions of the heme oxygenases. Oncotarget 7:69075–69086

    Article  Google Scholar 

  • Vidaurre T, Casavilca S, Montenegro P et al (2019) Tumor protein p53 and K-ras gene mutations in peruvian patients with gallbladder cancer. Asian Pac J Cancer Prev 20:289–294

    Article  CAS  Google Scholar 

  • Wang TY, Liu CL, Chen MJ et al (2015) Expression of haem oxygenase-1 correlates with tumour aggressiveness and BRAF V600E expression in thyroid cancer. Histopathology 66:447–456

    Article  Google Scholar 

  • Wang T, Ashrafi A, Konduri PC et al (2021) Heme sequestration as an effective strategy for the suppression of tumor growth and progression. Mol Cancer Ther 20:2506–2518

    Article  CAS  Google Scholar 

  • Warnatz HJ, Schmidt D, Manke T et al (2011) The BTB and CNC homology 1 (BACH1) target genes are involved in the oxidative stress response and in control of the cell cycle. J Biol Chem 286:23521–23532

    Article  CAS  Google Scholar 

  • Was H, Cichon T, Smolarczyk R et al (2006) Overexpression of heme oxygenase-1 in murine melanoma: increased proliferation and viability of tumor cells, decreased survival of mice. Am J Pathol 169:2181–2198

    Article  CAS  Google Scholar 

  • Wei X, Guo J, Li Q et al (2019) Bach1 regulates self-renewal and impedes mesendodermal differentiation of human embryonic stem cells. Sci Adv 5:eaau7887

    Article  CAS  Google Scholar 

  • Weinberg F, Hamanaka R, Wheaton WW et al (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 107:8788–8793

    Article  CAS  Google Scholar 

  • Wheaton WW, Weinberg SE, Hamanaka RB et al (2014) Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. Elife 3:e02242

    Article  Google Scholar 

  • Wiel C, Le Gal K, Ibrahim MX et al (2019) BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell 178:330-345e22

    Article  CAS  Google Scholar 

  • Wu B, Wu YW, Tang W (2019) Heme catabolic pathway in inflammation and immune disorders. Front Pharmacol 10:825

    Article  CAS  Google Scholar 

  • Wu Y, Liang Y, Li M et al (2022) Knockdown of long non-coding RNA SNHG8 suppresses the progression of esophageal cancer by regulating miR-1270/BACH1 axis. Bioengineered 13:3384–3394

    Article  CAS  Google Scholar 

  • Xie M, Sun M, Ji X et al (2022) Overexpression of BACH1 mediated by IGF2 facilitates hepatocellular carcinoma growth and metastasis via IGF1R and PTK2. Theranostics 12:1097–1116

    Article  CAS  Google Scholar 

  • Xu IM, Lai RK, Lin SH et al (2016) Transketolase counteracts oxidative stress to drive cancer development. Proc Natl Acad Sci USA 113:E725–E734

    Article  Google Scholar 

  • Xue X, Shah YM (2013) Intestinal iron homeostasis and colon tumorigenesis. Nutrients 5:2333–2351

    Article  CAS  Google Scholar 

  • Yanagawa T, Omura K, Harada H et al (2004) Heme oxygenase-1 expression predicts cervical lymph node metastasis of tongue squamous cell carcinomas. Oral Oncol 40:21–27

    Article  CAS  Google Scholar 

  • Yang PS, Hsu YC, Lee JJ et al (2018) Heme oxygenase-1 inhibitors induce cell cycle arrest and suppress tumor growth in thyroid cancer cells. Int J Mol Sci 19:2502

    Article  Google Scholar 

  • Yin YJ, Liu QJ, Wang B et al (2012) Expression and function of heme oxygenase-1 in human gastric cancer. Exp Biol Med 237:362–371

    Article  CAS  Google Scholar 

  • Yin H, Fang J, Liao L et al (2014) Upregulation of heme oxygenase-1 in colorectal cancer patients with increased circulation carbon monoxide levels, potentially affects chemotherapeutic sensitivity. BMC Cancer 14:436

    Article  Google Scholar 

  • Yu Y, Feng C, Kuang J et al (2022) Metformin exerts an antitumoral effect on papillary thyroid cancer cells through altered cell energy metabolism and sensitized by BACH1 depletion. Endocrine 6:116–131

    Article  Google Scholar 

  • Yuan F, Cong Z, Cai X et al (2022) BACH1 as a potential target for immunotherapy in glioblastomas. Int Immunopharmacol 103:108451

    Article  CAS  Google Scholar 

  • Yun J, Frankenberger CA, Kuo WL et al (2011) Signalling pathway for RKIP and Let-7 regulates and predicts metastatic breast cancer. EMBO J 30:4500–4514

    Article  CAS  Google Scholar 

  • Zenke-Kawasaki Y, Dohi Y, Katoh Y et al (2007) Heme induces ubiquitination and degradation of the transcription factor Bach1. Mol Cell Biol 27:6962–6971

    Article  CAS  Google Scholar 

  • Zhang DD (2021) The NRF2-KEAP1-ARE signal pathway: regulation and dual role in cancer. Free Radic Biol Med 165:10–11

    Article  Google Scholar 

  • Zhang L, Song FF, Huang YB et al (2014) Association between the (GT)n polymorphism of the HO-1 gene promoter region and cancer risk: a meta-analysis. Asian Pac J Cancer Prev 15:4617–4622

    Article  Google Scholar 

  • Zhang K, Fan Z, Weng J et al (2019) Peptide-based biosensing of redox-active protein-heme complexes indicates novel mechanism for tumor survival under oxidative stress. ACS Sens 4:2671–2678

    Article  CAS  Google Scholar 

  • Zhang YM, Chen BS, Xu NJ et al (2021) Exosomes promote the transition of androgen-dependent prostate cancer cells into androgen-independent manner through up-regulating the heme oxygenase-1. Int J Nanomed 16:315–327

    Article  Google Scholar 

  • Zhou Y, Du Q, Zhao Q et al (2022) A heme-regulatable chemodynamic nanodrug harnessing transcription factor Bach1 against lung cancer metastasis. J Colloid Interface Sci 610:698–708

    Article  CAS  Google Scholar 

  • Zou CX, Zou CD, Cheng WP et al (2016) Heme oxygenase-1 retards hepatocellular carcinoma progression through the microRNA pathway. Oncol Rep 36:2715–2722

    Article  CAS  Google Scholar 

Download references

Funding

This project was supported by the National Natural Science Foundation of China (No. 81560580 and No. 81760377).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. JC, KZ, and YW performed material preparation, data collection, and analysis. JX wrote the first draft of the manuscript, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jing Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Zhu, K., Wang, Y. et al. The dual role and mutual dependence of heme/HO-1/Bach1 axis in the carcinogenic and anti-carcinogenic intersection. J Cancer Res Clin Oncol 149, 483–501 (2023). https://doi.org/10.1007/s00432-022-04447-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-022-04447-7

Keywords

Navigation