Skip to main content

Advertisement

Log in

Regulatory mechanisms of heme regulatory protein BACH1: a potential therapeutic target for cancer

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

A limited number of overexpressed transcription factors are associated with cancer progression in many types of cancer. BTB and CNC homology 1 (BACH1) is the first mammalian heme-binding transcription factor that belongs to the basic region leucine zipper (bZIP) family and a member of CNC (cap ‘n’ collar). It forms heterodimers with the small musculoaponeurotic fibrosarcoma (MAF) proteins and stimulates or suppresses the expression of target genes under a very low intracellular heme concentration. It possesses a significant regulatory role in heme homeostasis, oxidative stress, cell cycle, apoptosis, angiogenesis, and cancer metastasis progression. This review discusses the current knowledge about how BACH1 regulates cancer metastasis in various types of cancer and other carcinogenic associated factors such as oxidative stress, cell cycle regulation, apoptosis, and angiogenesis. Overall, from the reported studies and outcomes, it could be realized that BACH1 is a potential pharmacological target for discovering new therapeutic anticancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

Abbreviations

BACH1:

BTB and CNC homology 1

BTB:

Broad complex tramtrack bric-a-brac domain

POZ:

Poxvirus and zinc finger

bZIP:

Basic region leucine zipper

CNC:

Cap ‘n’ collar

MAF:

Musculoaponeurotic fibrosarcoma

TF:

Transcription factor

HeRM:

Heme responsive motif

CP:

Cysteine and proline

CLS:

Cytoplasmic localization signal

CRM1:

Chromosome region maintenance 1

MARE:

MAF recognition elements

SMC:

Smooth muscle cells

AMI:

Acute myocardial infarction

EOC:

Epithelial ovarian cancer

EMT:

Endothelial mesenchymal transaction

CRC:

Colorectal cancer

TNBC:

Triple negative breast cancer

OCR:

Oxygen consumption rate

ETC:

Electron transport chain

References

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  2. Li J, Shima H, Nishizawa H, Ikeda M, Brydun A, Matsumoto M, et al. Phosphorylation of BACH1 switches its function from transcription factor to mitotic chromosome regulator and promotes its interaction with HMMR. Biochem J. 2018;475:981–1002.

    Article  PubMed  CAS  Google Scholar 

  3. Fong AP, Tapscott SJ. Skeletal muscle programming and reprogramming. Curr Opin Genet Dev. 2013;23:568–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Takahashi K, Yamanaka S. A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol. 2016;17:183–93.

    Article  CAS  PubMed  Google Scholar 

  5. Lambert M, Jambon S, Depauw S, David-Cordonnier M-H. Targeting transcription factors for cancer treatment. Molecules. 2018;23(6):1479.

    Article  PubMed Central  CAS  Google Scholar 

  6. Kannan MB, Solovieva V, Blank V. The small MAF transcription factors MAFF, MAFG and MAFK: current knowledge and perspectives. Biochim Biophys Acta Neth. 2012;1823:1841–6.

    Article  CAS  Google Scholar 

  7. Katsuoka F, Yamamoto M. Small Maf proteins (MafF, MafG, MafK): History, structure and function. Gene. 2016;586:197–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Davudian S, Mansoori B, Shajari N, Mohammadi A, Baradaran B. BACH1, the master regulator gene: a novel candidate target for cancer therapy. Gene. 2016;588:30–7.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang X, Guo J, Wei X, Niu C, Jia M, Li Q, et al. Bach1: Function, regulation, and involvement in disease. Oxid Med Cell Longev. 2018;48:1347969.

    Google Scholar 

  10. Zhou Y, Wu H, Zhao M, Chang C, Lu Q. The bach family of transcription factors: a comprehensive review. Clin Rev Allergy Immunol. 2016;50:345–56.

    Article  CAS  PubMed  Google Scholar 

  11. Oyake T, Itoh K, Motohashi H, Hayashi N, Hoshino H, Nishizawa M, et al. Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site. Mol Cell Biol. 1996;16:6083–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Otsuki A. Yamamoto M [CNC-small Maf heterodimer: Unique cis-element recognition and biological functions]. Seikagaku. 2017;89:278–81.

    CAS  PubMed  Google Scholar 

  13. Ryter SW. Significance of heme and heme degradation in the pathogenesis of acute lung and inflammatory disorders. Int J Mol Sci. 2021;22(11):5509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stevenson DK, Wong RJ. The biology of bilirubin production: detection and inhibition. Pediatr Med. 2021;5:16–16.

    Article  Google Scholar 

  15. Wißbrock A, George AAP, Brewitz HH, Kühl T, Imhof D. The molecular basis of transient heme-protein interactions: analysis, concept and implementation. Biosci Rep. 2019;39:1–11.

    Article  Google Scholar 

  16. Igarashi K, Nishizawa H, Saiki Y, Matsumoto M. The transcription factor BACH1 at the crossroads of cancer biology: From epithelial-mesenchymal transition to ferroptosis. J Biol Chem. 2021;21:101032.

    Article  CAS  Google Scholar 

  17. Zenke-Kawasaki Y, Dohi Y, Katoh Y, Ikura T, Ikura M, Asahara T, et al. Heme induces ubiquitination and degradation of the transcription factor bach1. Mol Cell Biol. 2007;27:6962–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cai Y, Li B, Peng D, Wang X, Li P, Huang M, et al. Crm1-Dependent nuclear export of bach1 is involved in the protective effect of hyperoside on oxidative damage in hepatocytes and CCl(4)-induced acute liver injury. J Inflamm Res. 2021;14:551–65.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Simile MM, Latte G, Pascale RM. MAF proteins: a family of regulating and regulated molecules. Dig Med Res. 2018;1:22–22.

    Article  Google Scholar 

  20. Padilla J, Lee J. A novel therapeutic target, BACH1, regulates cancer metabolism. Cells. 2021;10(3):634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sanada Y, Tan SJO, Adachi N, Miyaki S. Pharmacological targeting of heme oxygenase-1 in osteoarthritis. Antioxidants. 2021;10:1–28.

    Article  CAS  Google Scholar 

  22. He F, Ru X, Wen T. NRF2, a transcription factor for stress response and beyond. Int J Mol Sci. 2020;21:1–23.

    Article  Google Scholar 

  23. Mito S, Ozono R, Oshima T, Yano Y, Watari Y, Yamamoto Y, et al. Myocardial protection against pressure overload in mice lacking Bach1, a transcriptional repressor of heme oxygenase-1. Hypertens. 2008;51:1570–7.

    Article  CAS  Google Scholar 

  24. Harusato A, Naito Y, Takagi T, Uchiyama K, Mizushima K, Hirai Y, et al. Suppression of indomethacin-induced apoptosis in the small intestine due to Bach1 deficiency. Free Radic Res. 2011;45:717–27.

    Article  CAS  PubMed  Google Scholar 

  25. Tanimoto T, Hattori N, Senoo T, Furonaka M, Ishikawa N, Fujitaka K, et al. Genetic ablation of the Bach1 gene reduces hyperoxic lung injury in mice: Role of IL-6. Free Radic Biol Med. 2009;46:1119–26.

    Article  CAS  PubMed  Google Scholar 

  26. Watari Y, Yamamoto Y, Brydun A, Ishida T, Mito S, Yoshizumi M, et al. Ablation of the Bach1 gene leads to the suppression of atherosclerosis in Bach1 and apolipoprotein E double knockout mice. Hypertens Res. 2008;31:783–92.

    Article  CAS  PubMed  Google Scholar 

  27. Daher B, Vučetić M, Pouysségur J. Cysteine depletion, a key action to challenge cancer cells to ferroptotic cell death. Front Oncol. 2020;10:723.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Koppula P, Zhang Y, Zhuang L, Gan B. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun. 2018;38:12.

    Article  Google Scholar 

  29. Warnatz HJ, Schmidt D, Manke T, Piccini I, Sultan M, Borodina T, et al. The BTB and CNC homology 1 (BACH1) target genes are involved in the oxidative stress response and in control of the cell cycle. J Biol Chem. 2011;286:23521–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ota K, Brydun A, Itoh-Nakadai A, Sun J, Igarashi K. Bach1 deficiency and accompanying overexpression of heme oxygenase-1 do not influence aging or tumorigenesis in mice. Oxid Med Cell Longev. 2014;49:757901.

    Google Scholar 

  31. Dohi Y, Ikura T, Hoshikawa Y, Katoh Y, Ota K, Nakanome A, et al. Bach1 inhibits oxidative stress-induced cellular senescence by impeding p53 function on chromatin. Nat Struct Mol Biol. 2008;15:1246–54.

    Article  CAS  PubMed  Google Scholar 

  32. Li N, Wang C, Wu Y, Liu X, Cao X. Ca(2+)/calmodulin-dependent protein kinase II promotes cell cycle progression by directly activating MEK1 and subsequently modulating p27 phosphorylation. J Biol Chem. 2009;284:3021–7.

    Article  CAS  PubMed  Google Scholar 

  33. Nijman SMB, Marielle Hijmans E, El Messaoudi S, Van Dongen MMW, Sardet C, Bernards R. A functional genetic screen identifies TFE3 as a gene that confers resistance to the anti-proliferative effects of the retinoblastoma protein and transforming growth factor-β. J Biol Chem. 2006;281:21582–7.

    Article  CAS  PubMed  Google Scholar 

  34. Ma S, Attarwala IY, Xie X-Q. SQSTM1/p62: A Potential Target for Neurodegenerative Disease. ACS Chem Neurosci. 2019;10:2094–114.

    Article  CAS  PubMed  Google Scholar 

  35. Tao M, Liu T, You Q, Jiang Z. p62 as a therapeutic target for tumor. Eur J Med Chem Fr. 2020;193:112231.

    Article  CAS  Google Scholar 

  36. Sanchez G, Bittencourt D, Laud K, Barbier J, Delattre O, Auboeuf D, et al. Alteration of cyclin D1 transcript elongation by a mutated transcription factor upregulates the oncogenic D1b splice isoform in cancer. Proc Natl Acad Sci USA. 2008;105:6004–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chung AS, Ferrara N. Developmental and pathological angiogenesis. Annu Rev Cell Dev Biol. 2011;27:563–84.

    Article  CAS  PubMed  Google Scholar 

  38. Jian L, Yin M, Liu J, Wang X, Niu C, Kang X, et al. Bach1 represses Wnt/β-catenin signaling and angiogenesis. Circ Res. 2015;117:364–75.

    Article  CAS  Google Scholar 

  39. Jiang L, Yin M, Xu J, Jia M, Sun S, Wang X, et al. The transcription factor bach1 suppresses the developmental angiogenesis of zebrafish. Oxid Med Cell Longev. 2017;40:2143875.

    Google Scholar 

  40. Jiang L, Jia M, Wei X, Guo J, Hao S, Mei A, et al. Bach1-induced suppression of angiogenesis is dependent on the BTB domain: Bach1’s BTB domain and angiogenesis. EBioMedicine. 2020;51:1–11.

    Article  Google Scholar 

  41. Alvarez A, Woolf PJ. RegNetB: predicting relevant regulator-gene relationships in localized prostate tumor samples. BMC Bioinform. 2011;12:243.

    Article  Google Scholar 

  42. Mansoori B, Mohammadi A, Ghasabi M, Shirjang S, Dehghan R, Montazeri V, et al. miR-142-3p as tumor suppressor miRNA in the regulation of tumorigenicity, invasion and migration of human breast cancer by targeting Bach-1 expression. J Cell Physiol. 2019;234:9816–25.

    Article  CAS  PubMed  Google Scholar 

  43. Yun J, Frankenberger CA, Kuo WL, Boelens MC, Eves EM, Cheng N, et al. Signalling pathway for RKIP and Let-7 regulates and predicts metastatic breast cancer. EMBO J. 2011;30:4500–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shajari N, Davudian S, Kazemi T, Mansoori B, Salehi S, Khaze Shahgoli V, et al. Silencing of BACH1 inhibits invasion and migration of prostate cancer cells by altering metastasis-related gene expression. Artif Cells Nanomed Biotechnol. 2018;46:1495–504.

    Article  CAS  PubMed  Google Scholar 

  45. Liang Y, Wu H, Lei R, Chong RA, Wei Y, Lu X, et al. Transcriptional network analysis identifies BACH1 as a master regulator of breast cancer bone metastasis. J Biol Chem. 2012;287:33533–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fang M, Hutchinson L, Deng A, Green MR. Common BRAF(V600E)-directed pathway mediates widespread epigenetic silencing in colorectal cancer and melanoma. Proc Natl Acad Sci. 2016;113:1250–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Eves EM, Shapiro P, Naik K, Klein UR, Trakul N, Rosner MR. Raf kinase inhibitory protein regulates aurora B kinase and the spindle checkpoint. Mol Cell. 2006;23:561–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Martinho O, Granja S, Jaraquemada T, Caeiro C, Miranda-Gonçalves V, Honavar M, et al. Downregulation of RKIP is associated with poor outcome and malignant progression in gliomas. PLoS ONE. 2012;7:1–9.

    Article  CAS  Google Scholar 

  49. Raquel-Cunha A, Cardoso-Carneiro D, Reis RM, Martinho O. Current Status of Raf Kinase Inhibitor Protein (RKIP) in Lung Cancer: Behind RTK Signaling. Cells. 2019; May 10;8(5):442.

  50. Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D, et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res. 2007;67:7713–22.

    Article  CAS  PubMed  Google Scholar 

  51. Tavazoie SF, Alarcón C, Oskarsson T, Padua D, Wang Q, Bos PD, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature. 2008;451:147–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. BACH1, a novel master regulator of metastasis from breast to bone. Bonekey Rep. 2012;1:189.

  53. Lee J, Lee J, Farquhar KS, Yun J, Frankenberger CA, Bevilacqua E, et al. Network of mutually repressive metastasis regulators can promote cell heterogeneity and metastatic transitions. Proc Natl Acad Sci USA. 2014;111:E364–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lu J, Zang H, Zheng H, Zhan Y, Yang Y, Zhang Y, et al. Overexpression of p-Akt, p-mTOR and p-eIF4E proteins associates with metastasis and unfavorable prognosis in non-small cell lung cancer. PLoS ONE. 2020;15:e0227768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Montalto FI, De Amicis F. Cyclin D1 in cancer: a molecular connection for cell cycle control, adhesion and invasion in tumor and stroma. Cells. 2020;9(12):2648.

    Article  CAS  PubMed Central  Google Scholar 

  56. Chatterjee S, Behnam Azad B, Nimmagadda S. The intricate role of CXCR4 in cancer. Adv Cancer Res. 2014;124:31–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shen J, Zhang Y, Yu H, Shen B, Liang Y, Jin R, et al. Role of DUSP1/MKP1 in tumorigenesis, tumor progression and therapy. Cancer Med. 2016;5:2061–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Malek A, Bakhidze E, Noske A, Sers C, Aigner A, Schäfer R, et al. HMGA2 gene is a promising target for ovarian cancer silencing therapy. Int J Cancer. 2008;123:348–56.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang S, Mo Q, Wang X. Oncological role of HMGA2 (Review). Int J Oncol Greece. 2019;55:775–88.

    CAS  Google Scholar 

  60. Zhu Z, Golay HG, Barbie DA. Targeting pathways downstream of KRAS in lung adenocarcinoma. Pharmacogenomics. 2014;15:1507–18.

    Article  CAS  PubMed  Google Scholar 

  61. Lee S, Rauch J, Kolch W. Targeting MAPK signaling in cancer: mechanisms of drug resistance and sensitivity. Int J Mol Sci. 2020;21(3):1102.

    Article  CAS  PubMed Central  Google Scholar 

  62. Pfeffer SR, Yang CH, Pfeffer LM. The role of miR-21 in cancer. Drug Dev Res. 2015;76:270–7.

    Article  CAS  PubMed  Google Scholar 

  63. Najjary S, Mohammadzadeh R, Mokhtarzadeh A, Mohammadi A, Kojabad AB, Baradaran B. Role of miR-21 as an authentic oncogene in mediating drug resistance in breast cancer. Gene. 2020;738:144453.

    Article  CAS  PubMed  Google Scholar 

  64. Shen CJ, Kuo YL, Chen CC, Chen MJ, Cheng YM. MMP1 expression is activated by Slug and enhances multidrug resistance (MDR) in breast cancer. PLoS ONE. 2017;12:1–13.

    Google Scholar 

  65. Littlepage LE, Sternlicht MD, Rougier N, Phillips J, Gallo E, Yu Y, et al. Matrix metalloproteinases contribute distinct roles in neuroendocrine prostate carcinogenesis, metastasis, and angiogenesis progression. Cancer Res. 2010;70:2224–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gobin E, Bagwell K, Wagner J, Mysona D, Sandirasegarane S, Smith N, et al. A pan-cancer perspective of matrix metalloproteases (MMP) gene expression profile and their diagnostic/prognostic potential. BMC Cancer. 2019;19:581.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Liu K, Hu H, Jiang H, Zhang H, Gong S, Wei D, et al. RUNX1 promotes MAPK signaling to increase tumor progression and metastasis via OPN in head and neck cancer. Carcinogenesis. 2021;42(3):414–22.

    Article  CAS  PubMed  Google Scholar 

  68. Zhang YY, Kong LQ, Zhu XD, Cai H, Wang CH, Shi WK, et al. CD31 regulates metastasis by inducing epithelial–mesenchymal transition in hepatocellular carcinoma via the ITGB1-FAK-Akt signaling pathway. Cancer Lett. 2018;429:29–40. https://doi.org/10.1016/j.canlet.2018.05.004.

    Article  CAS  PubMed  Google Scholar 

  69. Holck S, Klarskov LL, Larsson L-I. Phospho-ERK levels as predictors for chemotherapy of rectal carcinoma. Oncotarget. 2019;10:1745–55.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zheng Y, Sowers JY, Houston KD. IGFBP-1 expression promotes tamoxifen resistance in breast cancer cells via erk pathway activation. Front Endocrinol (Lausanne). 2020;11:233.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lim V, Zhu H, Diao S, Hu L, Hu J. PKP3 interactions with MAPK-JNK-ERK1/2-mTOR pathway regulates autophagy and invasion in ovarian cancer. Biochem Biophys Res Commun. 2019;508:646–53.

    Article  CAS  PubMed  Google Scholar 

  72. Lu Z, Peng K, Wang N, Liu H-M, Hou G. Downregulation of p70S6K enhances cell sensitivity to rapamycin in esophageal squamous cell carcinoma. J Immunol Res. 2016;2016:7828916.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Liu L, Hu J, Yu T, You S, Zhang Y, Hu L. miR-27b-3p/MARCH7 regulates invasion and metastasis of endometrial cancer cells through Snail-mediated pathway. Acta Biochim Biophys Sin (Shanghai). 2019;51:492–500.

    Article  CAS  Google Scholar 

  74. Kuang J, Min L, Liu C, Chen S, Gao C, Ma J, et al. RNF8 promotes epithelial-mesenchymal transition in lung cancer cells via stabilization of slug. Mol Cancer Res. 2020;18:1638–49.

    Article  CAS  PubMed  Google Scholar 

  75. Liu X, Li C, Yang Y, Liu X, Li R, Zhang M, et al. Synaptotagmin 7 in twist-related protein 1-mediated epithelial: mesenchymal transition of non-small cell lung cancer. EBioMedicine. 2019;46:42–53.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Pulkkinen HH, Kiema M, Lappalainen JP, Toropainen A, Beter M, Tirronen A, et al. BMP6/TAZ-Hippo signaling modulates angiogenesis and endothelial cell response to VEGF. Angiogenesis. 2021;24:129–44.

    Article  CAS  PubMed  Google Scholar 

  77. Sharma P, Alsharif S, Fallatah A, Chung BM. Intermediate filaments as effectors of cancer development and metastasis: a focus on keratins, vimentin, and nestin. Cells. 2019;8(5):497.

    Article  CAS  PubMed Central  Google Scholar 

  78. Luo W, Fedda F, Lynch P, Tan D. CDH1 gene and hereditary diffuse gastric cancer syndrome: molecular and histological alterations and implications for diagnosis and treatment. Front Pharmacol. 2018;9:1421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Guo M, Zhao X, Yuan X, Jiang J, Li P. MiR-let-7a inhibits cell proliferation, migration, and invasion by down-regulating PKM2 in cervical cancer. Oncotarget. 2017;8:28226–36.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Slabáková E, Culig Z, Remšík J, Souček K. Alternative mechanisms of miR-34a regulation in cancer. Cell Death Dis. 2017;8:3100.

    Article  CAS  Google Scholar 

  81. Martin TA, Mansel RE, Jiang WG. Loss of occludin leads to the progression of human breast cancer. Int J Mol Med. 2010;26:723–34.

    Article  CAS  PubMed  Google Scholar 

  82. Escara-Wilke J, Yeung K, Keller ET. Raf kinase inhibitor protein (RKIP) in cancer. Cancer Metastasis Rev. 2012;31:615–20.

    Article  CAS  PubMed  Google Scholar 

  83. Thuault S, Tan EJ, Peinado H, Cano A, Heldin CH, Moustakas A. HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. J Biol Chem. 2008;283:33437–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Han W, Zhang Y, Niu C, Guo J, Li J, Wei X, et al. BTB and CNC homology 1 (Bach1) promotes human ovarian cancer cell metastasis by HMGA2-mediated epithelial-mesenchymal transition. Cancer Lett. 2019;445:45–56.

    Article  CAS  PubMed  Google Scholar 

  85. Fitzgerald TL, Lertpiriyapong K, Cocco L, Martelli AM, Libra M, Candido S, et al. Roles of EGFR and KRAS and their downstream signaling pathways in pancreatic cancer and pancreatic cancer stem cells. Adv Biol Regul. 2015;59:65–81.

    Article  CAS  PubMed  Google Scholar 

  86. Nakanome A, Brydun A, Matsumoto M, Ota K, Funayama R, Nakayama K, et al. Bach1 is critical for the transformation of mouse embryonic fibroblasts by Ras(V12) and maintains ERK signaling. Oncogene England. 2013;32:3231–45.

    Article  CAS  Google Scholar 

  87. Sato M, Matsumoto M, Saiki Y, Alam M, Nishizawa H, Rokugo M, et al. BACH1 promotes pancreatic cancer metastasis by repressing Epithelial genes and enhancing epithelial-mesenchymal transition. Cancer Res. 2020;80:1279–92.

    Article  CAS  PubMed  Google Scholar 

  88. Zhou H, Zhu X. Association between matrix-metalloproteinase polymorphisms and prostate cancer risk: a meta-analysis and systematic review. Cancer Manag Res. 2018;10:5247–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cai J, Shen G, Liu S, Meng Q. Downregulation of HMGA2 inhibits cellular proliferation and invasion, improves cellular apoptosis in prostate cancer. Tumour Biol J Int Soc Oncodevelopmental Biol Med. 2016;37:699–707.

    Article  CAS  Google Scholar 

  90. Yang P, Li J, Peng C, Tan Y, Chen R, Peng W, et al. TCONS_00012883 promotes proliferation and metastasis via DDX3/YY1/MMP1/PI3K-AKT axis in colorectal cancer. Clin Transl Med. 2020;10:211.

    Article  Google Scholar 

  91. Biasci D, Smoragiewicz M, Connell CM, Wang Z, Gao Y, Thaventhiran JED, et al. CXCR4 inhibition in human pancreatic and colorectal cancers induces an integrated immune response. Proc Natl Acad Sci. 2020;117:28960–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Davudian S, Shajari N, Kazemi T, Mansoori B, Salehi S, Mohammadi A, et al. BACH1 silencing by siRNA inhibits migration of HT-29 colon cancer cells through reduction of metastasis-related genes. Biomed Pharmacother. 2016;84:191–8.

    Article  CAS  PubMed  Google Scholar 

  93. Zhu GD, Liu F, OuYang S, Zhou R, Jiang FN, Zhang B, et al. BACH1 promotes the progression of human colorectal cancer through BACH1/CXCR4 pathway. Biochem Biophys Res Commun. 2018;499:120–7.

    Article  CAS  PubMed  Google Scholar 

  94. Berger AH, Brooks AN, Wu X, Shrestha Y, Chouinard C, Piccioni F, et al. High-throughput phenotyping of lung cancer somatic mutations. Cancer Cell. 2016;30:214–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wiel C, Le Gal K, Ibrahim MX, Jahangir CA, Kashif M, Yao H, et al. BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell. 2019;178:330–45.

    Article  CAS  PubMed  Google Scholar 

  96. Lignitto L, LeBoeuf SE, Homer H, Jiang S, Askenazi M, Karakousi TR, et al. Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of bach1. Cell. 2019;178:316-329.e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Balan M, Pal S. A novel CXCR3-B chemokine receptor-induced growth-inhibitory signal in cancer cells is mediated through the regulation of Bach-1 protein and Nrf2 protein nuclear translocation. J Biol Chem. 2014;289:3126–37.

    Article  CAS  PubMed  Google Scholar 

  98. Aletaha M, Mansoori B, Mohammadi A, Fazeli M, Baradaran B. Therapeutic effects of bach1 siRNA on human breast adenocarcinoma cell line. Biomed Pharmacother. 2017;88:34–42.

    Article  CAS  PubMed  Google Scholar 

  99. Lee J, Yesilkanal AE, Wynne JP, Frankenberger C, Liu J, Yan J, et al. Effective breast cancer combination therapy targeting BACH1 and mitochondrial metabolism. Nature. 2019;568:254–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Amash V, Paithankar K, Dharaskar SP, Arunachalam A, Amere SS. Development of nanocarrier-based mitochondrial chaperone, TRAP-1 inhibitor to combat cancer metabolism. ACS Appl Bio Mater. 2020;3:4188–97.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to DST FIST, UGC-SAP, and MHRD-RUSA PHASE- 2.0 for providing the infrastructure facility.

Author information

Authors and Affiliations

Authors

Contributions

AA and ST contributed for conception, design, and drafting of the manuscript. DKL, GR, SP, and PV-data search and formal analysis. SM critically reviewed the manuscript and comprehensively edited the fnal submitted version. All authors have reviewed and validated the fnal version of the manuscript.

Corresponding author

Correspondence to Sivasudha Thilagar.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Consent to participate

Not applicable.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arunachalam, A., Lakshmanan, D.K., Ravichandran, G. et al. Regulatory mechanisms of heme regulatory protein BACH1: a potential therapeutic target for cancer. Med Oncol 38, 122 (2021). https://doi.org/10.1007/s12032-021-01573-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-021-01573-z

Keywords

Navigation