Skip to main content

Advertisement

Log in

The structural connectivity of the human angular gyrus as revealed by microdissection and diffusion tractography

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The angular gyrus (AG) has been described in numerous studies to be consistently activated in various functional tasks. The angular gyrus is a critical connector epicenter linking multiple functional networks due to its location in the posterior part of the inferior parietal cortex, namely at the junction between the parietal, temporal, and occipital lobes. It is thus crucial to identify the different pathways that anatomically connect this high-order association region to the rest of the brain. Our study revisits the three-dimensional architecture of the structural AG connectivity by combining state-of-the-art postmortem blunt microdissection with advanced in vivo diffusion tractography to comprehensively describe the association, projection, and commissural fibers that connect the human angular gyrus. AG appears as a posterior “angular stone” of associative connections belonging to mid- and long-range dorsal and ventral fibers of the superior and inferior longitudinal systems, respectively, to short-range parietal, occipital, and temporal fibers, including U-shaped fibers in the posterior transverse system. Thus, AG is at a pivotal dorso-ventral position reflecting its critical role in the different functional networks, particularly in language elaboration and spatial attention and awareness in the left and right hemispheres, respectively. We also reveal striatal, thalamic, and brainstem connections and a typical inter-hemispheric homotopic callosal connectivity supporting the suggested AG role in the integration of sensory input for modulating motor control and planning. The present description of AG’s highly distributed wiring diagram may drastically improve intraoperative subcortical testing and post-operative neurologic outcomes related to surgery in and around the angular gyrus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The in vivo diffusion MRI dataset analyzed in the current study belongs to the BIL&GIN database. The BIL&GIN is not freely available, but a data-sharing model based on collaborative research agreements has been implemented. Request for joint research projects can be made through the BIL&GIN website or by email to the corresponding author of the present paper.

Code availability

Software application or custom code: no specific code developed, not applicable.

References

  • Avants BB, Tustison NJ, Song G (2009) Advanced normalization tools (ANTS). Insight J 2:1–35

    Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations. J Roy Stat Soc Ser B (methodol) 26(2):211–252

    Google Scholar 

  • Bullock D, Takemura H, Caiafa CF, Kitchell L, McPherson B, Caron B, Pestilli F (2019) Associative white matter connecting the dorsal and ventral posterior human cortex. Brain Struct Funct 224(8):2631–2660. https://doi.org/10.1007/s00429-019-01907-8

    Article  Google Scholar 

  • Catani M, Robertsson N, Beyh A, Huynh V, de Santiago RF, Howells H, Barrett RLC, Aiello M, Cavaliere C, Dyrby TB, Krug K, Ptito M, D’Arceuil H, Forkel SJ, Dell’Acqua F (2017) Short parietal lobe connections of the human and monkey brain. Cortex 97:339–357. https://doi.org/10.1016/j.cortex.2017.10.022

    Article  Google Scholar 

  • Cattaneo L, Barchiesi G (2011) Transcranial magnetic mapping of the short-latency modulations of corticospinal activity from the ipsilateral hemisphere during rest. Front Neural Circuits 5:14. https://doi.org/10.3389/fncir.2011.00014

    Article  Google Scholar 

  • Cattaneo L, Giampiccolo D, Meneghelli P, Tramontano V, Sala F (2020) Cortico-cortical connectivity between the superior and inferior parietal lobules and the motor cortex assessed by intraoperative dual cortical stimulation. Brain Stimul 13(3):819–831. https://doi.org/10.1016/j.brs.2020.02.023

    Article  Google Scholar 

  • Caverzasi E, Papinutto N, Amirbekian B, Berger MS, Henry RG (2014) Q-Ball of Inferior Fronto-Occipital Fasciculus and Beyond. PLoS ONE 9(6):e100274. https://doi.org/10.1371/journal.pone.0100274

    Article  CAS  Google Scholar 

  • Chenot Q, Tzourio-Mazoyer N, Rheault F, Descoteaux M, Crivello F, Zago L, Mellet E, Jobard G, Joliot M, Mazoyer B, Petit L (2019) A population-based atlas of the human pyramidal tract in 410 healthy participants. Brain Struct Funct 224(2):599–612. https://doi.org/10.1007/s00429-018-1798-7

    Article  Google Scholar 

  • Crosby E, Humphrey T, Lauer EW (1962) Correlative anatomy of the nervous system. The MacMillan Company, New York

    Google Scholar 

  • De Benedictis A, Petit L, Descoteaux M, Marras CE, Barbareschi M, Corsini F, Dallabona M, Chioffi F, Sarubbo S (2016) New insights in the homotopic and heterotopic connectivity of the frontal portion of the human corpus callosum revealed by microdissection and diffusion tractography. Hum Brain Mapp 37(12):4718–4735. https://doi.org/10.1002/hbm.23339

    Article  Google Scholar 

  • De Benedictis A, Nocerino E, Menna F, Remondino F, Barbareschi M, Rozzanigo U, Corsini F, Olivetti E, Marras CE, Chioffi F, Avesani P, Sarubbo S (2018) Photogrammetry of the human brain: a novel method for three-dimensional quantitative exploration of the structural connectivity in neurosurgery and neurosciences. World Neurosurg 115:e279–e291. https://doi.org/10.1016/j.wneu.2018.04.036

    Article  Google Scholar 

  • De Benedictis A, Marras CE, Petit L, Sarubbo S (2021) The inferior fronto-occipital fascicle: a century of controversies from anatomy theaters to operative neurosurgery. J Neurosurg Sci 65(6):605–615. https://doi.org/10.23736/S0390-5616.21.05360-1

    Article  Google Scholar 

  • Dejerine J, Dejerine-Klumpke A (1895) Anatomie des centres nerveux. Tome 1. Rueff et Cie, Paris

  • Dejerine J, Dejerine-Klumpke A (1901) Anatomie des centres nerveux. Tome 2. Rueff et Cie, Paris

  • Di Carlo DT, Benedetto N, Duffau H, Cagnazzo F, Weiss A, Castagna M, Cosottini M, Perrini P (2019) Microsurgical anatomy of the sagittal stratum. Acta Neurochir (wien) 161(11):2319–2327. https://doi.org/10.1007/s00701-019-04019-8

    Article  Google Scholar 

  • Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C (2017) Nextflow enables reproducible computational workflows. Nat Biotechnol 35(4):316–319. https://doi.org/10.1038/nbt.3820

    Article  CAS  Google Scholar 

  • Gallivan JP, Culham JC (2015) Neural coding within human brain areas involved in actions. Curr Opin Neurobiol 33:141–149. https://doi.org/10.1016/j.conb.2015.03.012

    Article  CAS  Google Scholar 

  • Guevara M, Guevara P, Román C, Mangin J-F (2020) Superficial white matter: a review on the dMRI analysis methods and applications. Neuroimage 212:116673. https://doi.org/10.1016/j.neuroimage.2020.116673

    Article  Google Scholar 

  • Hau J, Sarubbo S, Perchey G, Crivello F, Zago L, Mellet E, Jobard G, Joliot M, Mazoyer BM, Tzourio-Mazoyer N, Petit L (2016) Cortical terminations of the inferior fronto-occipital and uncinate fasciculi: anatomical stem-based virtual dissection. Front Neuroanat 10:58. https://doi.org/10.3389/fnana.2016.00058

    Article  Google Scholar 

  • Jiao Y, Lin F, Wu J, Li H, Fu W, Huo R, Cao Y, Wang S, Zhao J (2020) Plasticity in language cortex and white matter tracts after resection of dominant inferior parietal lobule arteriovenous malformations: a combined fMRI and DTI study. J Neurosurg 134(3):953–960. https://doi.org/10.3171/2019.12.JNS191987

    Article  Google Scholar 

  • Kinomura S, Larsson J, Gulyas B, Roland PE (1996) Activation by attention of the human reticular formation and thalamic intralaminar nuclei. Science 271:512–515

    Article  CAS  Google Scholar 

  • Kiriyama I, Miki H, Kikuchi K, Ohue S, Matsuda S, Mochizuki T (2009) Topographic analysis of the inferior parietal lobule in high-resolution 3D MR imaging. AJNR Am J Neuroradiol 30(3):520–524. https://doi.org/10.3174/ajnr.A1417

    Article  CAS  Google Scholar 

  • Koch G, Cercignani M, Pecchioli C, Versace V, Oliveri M, Caltagirone C, Rothwell J, Bozzali M (2010) In vivo definition of parieto-motor connections involved in planning of grasping movements. Neuroimage 51(1):300–312. https://doi.org/10.1016/j.neuroimage.2010.02.022

    Article  Google Scholar 

  • Kurtzer GM, Sochat V, Bauer MW (2017) Singularity: Scientific containers for mobility of compute. PLoS ONE 12(5):e0177459. https://doi.org/10.1371/journal.pone.0177459

    Article  CAS  Google Scholar 

  • LaBerge D (1995) Computational and anatomical models of selective attention in object identification. In: Gazzaniga MS (ed) The cognitive neurosciences, vol 41. MIT Press, Cambridge, pp 649–663

    Google Scholar 

  • Latini F, Trevisi G, Fahlstrom M, Jemstedt M, Alberius Munkhammar A, Zetterling M, Hesselager G, Ryttlefors M (2020) New insights into the anatomy, connectivity and clinical implications of the middle longitudinal fasciculus. Front Neuroanat 14(106):610324. https://doi.org/10.3389/fnana.2020.610324

    Article  Google Scholar 

  • Ludwig E, Klingler J (1956) Atlas cerebri humani. S. Karger, Basel

    Google Scholar 

  • Maffei C, Sarubbo S, Jovicich J (2019) Diffusion-based tractography atlas of the human acoustic radiation. Sci Rep 9(1):4046. https://doi.org/10.1038/s41598-019-40666-8

    Article  CAS  Google Scholar 

  • Mahdy Ali K, Avesani P (2021) The vertical superior longitudinal fascicle and the vertical occipital fascicle. J Neurosurg Sci 65(6):581–589. https://doi.org/10.23736/S0390-5616.21.05368-6

    Article  Google Scholar 

  • Maier-Hein KH, Neher PF, Houde JC, Cote MA, Garyfallidis E, Zhong J, Chamberland M, Yeh FC, Lin YC, Ji Q, Reddick WE, Glass JO, Chen DQ, Feng Y, Gao C, Wu Y, Ma J, He R, Li Q, Westin CF, Deslauriers-Gauthier S, Gonzalez JOO, Paquette M, St-Jean S, Girard G, Rheault F, Sidhu J, Tax CMW, Guo F, Mesri HY, David S, Froeling M, Heemskerk AM, Leemans A, Bore A, Pinsard B, Bedetti C, Desrosiers M, Brambati S, Doyon J, Sarica A, Vasta R, Cerasa A, Quattrone A, Yeatman J, Khan AR, Hodges W, Alexander S, Romascano D, Barakovic M, Auria A, Esteban O, Lemkaddem A, Thiran JP, Cetingul HE, Odry BL, Mailhe B, Nadar MS, Pizzagalli F, Prasad G, Villalon-Reina JE, Galvis J, Thompson PM, Requejo FS, Laguna PL, Lacerda LM, Barrett R, Dell’Acqua F, Catani M, Petit L, Caruyer E, Daducci A, Dyrby TB, Holland-Letz T, Hilgetag CC, Stieltjes B, Descoteaux M (2017) The challenge of mapping the human connectome based on diffusion tractography. Nat Commun 8(1):1349. https://doi.org/10.1038/s41467-017-01285-x

    Article  CAS  Google Scholar 

  • Makris N, Preti MG, Wassermann D, Rathi Y, Papadimitriou GM, Yergatian C, Dickerson BC, Shenton ME, Kubicki M (2013) Human middle longitudinal fascicle: segregation and behavioral-clinical implications of two distinct fiber connections linking temporal pole and superior temporal gyrus with the angular gyrus or superior parietal lobule using multi-tensor tractography. Brain Imaging Behav 7(3):335–352. https://doi.org/10.1007/s11682-013-9235-2

    Article  CAS  Google Scholar 

  • Makris N, Zhu A, Papadimitriou GM, Mouradian P, Ng I, Scaccianoce E, Baselli G, Baglio F, Shenton ME, Rathi Y, Dickerson B, Yeterian E, Kubicki M (2017) Mapping temporo-parietal and temporo-occipital cortico-cortical connections of the human middle longitudinal fascicle in subject-specific, probabilistic, and stereotaxic Talairach spaces. Brain Imaging Behav 11(5):1258–1277. https://doi.org/10.1007/s11682-016-9589-3

    Article  Google Scholar 

  • Mandonnet E, Sarubbo S, Petit L (2018) The nomenclature of human white matter association pathways: proposal for a systematic taxonomic anatomical classification. Front Neuroanat 12:94. https://doi.org/10.3389/fnana.2018.00094

    Article  Google Scholar 

  • Martino J, Brogna C, Robles SG, Vergani F, Duffau H (2010) Anatomic dissection of the inferior fronto-occipital fasciculus revisited in the lights of brain stimulation data. Cortex 46(5):691–699. https://doi.org/10.1016/j.cortex.2009.07.015

    Article  Google Scholar 

  • Matsumoto R, Nair DR, Ikeda A, Fumuro T, LaPresto E, Mikuni N, Bingaman W, Miyamoto S, Fukuyama H, Takahashi R, Najm I, Shibasaki H, Lüders HO (2012) Parieto-frontal network in humans studied by cortico-cortical evoked potential. Hum Brain Mapp 33(12):2856–2872. https://doi.org/10.1002/hbm.21407

    Article  Google Scholar 

  • Mazoyer B, Mellet E, Perchey G, Zago L, Crivello F, Jobard G, Delcroix N, Vigneau M, Leroux G, Petit L, Joliot M, Tzourio-Mazoyer N (2016) BIL&GIN: A neuroimaging, cognitive, behavioral, and genetic database for the study of human brain lateralization. Neuroimage. https://doi.org/10.1016/j.neuroimage.2015.02.071

    Article  Google Scholar 

  • Mesulam M-M (2008) Representation, inference, and transcendent encoding in neurocognitive networks of the human brain. Ann Neurol 64(4):367–378

    Article  Google Scholar 

  • Meynert T (1885) Psychiatry: clinical treatise on the diseases of the fore-brain, trans. B. Sachs. GP Putnam, New York & London

  • Nieuwenhuys R, Voogd J, van Huijzen C (2008) The human central nervous system, 4th edn. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Niu M, Palomero-Gallagher N (2022) Architecture and connectivity of the human angular gyrus and of its homolog region in the macaque brain. Brain Struct Funct. https://doi.org/10.1007/s00429-022-02509-7

    Article  Google Scholar 

  • Oishi K, Faria A, Jiang H, Li X, Akhter K, Zhang J, Hsu JT, Miller MI, van Zijl PCM, Albert M, Lyketsos CG, Woods R, Toga AW, Pike GB, Rosa-Neto P, Evans A, Mazziotta J, Mori S (2009) Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and Alzheimer’s disease participants. Neuroimage 46(2):486–499

    Article  Google Scholar 

  • Palejwala AH, O’Connor KP, Pelargos P, Briggs RG, Milton CK, Conner AK, Milligan TM, O’Donoghue DL, Glenn CA, Sughrue ME (2020) Anatomy and white matter connections of the lateral occipital cortex. Surg Radiol Anat 42(3):315–328. https://doi.org/10.1007/s00276-019-02371-z

    Article  Google Scholar 

  • Petit L, Rheault F, Descoteaux M, Tzourio-Mazoyer N Half of the streamlines built in a whole human brain tractogram is anatomically uninterpretable. In: 25th Conference of the Organization for Human Brain Mapping, Roma, 2019.

  • Petit L, Pouget P (2019) The comparative anatomy of frontal eye fields in primates. Cortex 118:51–64. https://doi.org/10.1016/j.cortex.2019.02.023

    Article  Google Scholar 

  • Rebelo D, Oliveira F, Abrunhosa A, Januario C, Lemos J, Castelo-Branco M (2021) A link between synaptic plasticity and reorganization of brain activity in Parkinson’s disease. Proc Natl Acad Sci U S A 118(3):e2013962118. https://doi.org/10.1073/pnas.2013962118

    Article  CAS  Google Scholar 

  • Rheault F, Poulin P, Valcourt Caron A, St-Onge E, Descoteaux M (2020) Common misconceptions, hidden biases and modern challenges of dMRI tractography. J Neural Eng 17(1):011001. https://doi.org/10.1088/1741-2552/ab6aad

    Article  Google Scholar 

  • Richard N, Desmurget M, Teillac A, Beuriat PA, Bardi L, Coude G, Szathmari A, Mottolese C, Sirigu A, Hiba B (2021) Anatomical bases of fast parietal grasp control in humans: a diffusion-MRI tractography study. Neuroimage 235:118002. https://doi.org/10.1016/j.neuroimage.2021.118002

    Article  Google Scholar 

  • Rozzi S, Calzavara R, Belmalih A, Borra E, Gregoriou GG, Matelli M, Luppino G (2006) Cortical connections of the inferior parietal cortical convexity of the macaque monkey. Cereb Cortex 16(10):1389–1417. https://doi.org/10.1093/cercor/bhj076

    Article  Google Scholar 

  • Sarubbo S, Le Bars E, Moritz-Gasser S, Duffau H (2012) Complete recovery after surgical resection of left Wernicke’s area in awake patient: a brain stimulation and functional MRI study. Neurosurg Rev 35(2):287–292. https://doi.org/10.1007/s10143-011-0351-4

    Article  Google Scholar 

  • Sarubbo S, De Benedictis A, Maldonado IL, Basso G, Duffau H (2013) Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle. Brain Struct Funct 218:21–37. https://doi.org/10.1007/s00429-011-0372-3

    Article  Google Scholar 

  • Sarubbo S, De Benedictis A, Merler S, Mandonnet E, Balbi S, Granieri E, Duffau H (2015) Towards a functional atlas of human white matter. Hum Brain Mapp 36(8):3117–3136. https://doi.org/10.1002/hbm.22832

    Article  Google Scholar 

  • Sarubbo S, De Benedictis A, Merler S, Mandonnet E, Barbareschi M, Dallabona M, Chioffi F, Duffau H (2016) Structural and functional integration between dorsal and ventral language streams as revealed by blunt dissection and direct electrical stimulation. Hum Brain Mapp 37(11):3858–3872. https://doi.org/10.1002/hbm.23281

    Article  Google Scholar 

  • Sarubbo S, Tate M, De Benedictis A, Merler S, Moritz-Gasser S, Herbet G, Duffau H (2020) Mapping critical cortical hubs and white matter pathways by direct electrical stimulation: an original functional atlas of the human brain. Neuroimage 205:116237. https://doi.org/10.1016/j.neuroimage.2019.116237

    Article  Google Scholar 

  • Schilling KG, Tax CMW, Rheault F, Landman BA, Anderson AW, Descoteaux M, Petit L (2022) Prevalence of white matter pathways coming into a single white matter voxel orientation: the bottleneck issue in tractography. Hum Brain Mapp 43(4):1196–1213. https://doi.org/10.1002/hbm.25697

    Article  Google Scholar 

  • Schmahmann JD, Pandya DN (2006) Fiber pathways of the brain. Oxford University Press, New York

    Book  Google Scholar 

  • Seghier ML (2013) The angular gyrus: multiple functions and multiple subdivisions. Neuroscientist 19(1):43–61. https://doi.org/10.1177/1073858412440596

    Article  Google Scholar 

  • Sparing R, Thimm M, Hesse MD, Kust J, Karbe H, Fink GR (2009) Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation. Brain 132(Pt 11):3011–3020. https://doi.org/10.1093/brain/awp154

    Article  CAS  Google Scholar 

  • Theaud G, Houde JC, Bore A, Rheault F, Morency F, Descoteaux M (2020) TractoFlow: a robust, efficient and reproducible diffusion mri pipeline leveraging nextflow & singularity. Neuroimage 218:116889. https://doi.org/10.1016/j.neuroimage.2020.116889

    Article  Google Scholar 

  • Thiebaut de Schotten M, Urbanski M, Duffau H, Volle E, Levy R, Dubois B, Bartolomeo P (2005) Direct evidence for a parietal-frontal pathway subserving spatial awareness in humans. Science 309(5744):2226–2228

    Article  CAS  Google Scholar 

  • Thiebaut de Schotten M, Dell’Acqua F, Forkel SJ, Simmons A, Vergani F, Murphy DGM, Catani M (2011) A lateralized brain network for visuospatial attention. Nat Neurosci 14(10):1245–1246

    Article  CAS  Google Scholar 

  • Vavassori L, Sarubbo S, Petit L (2021) Hodology of the superior longitudinal system of the human brain: a historical perspective, the current controversies, and a proposal. Brain Struct Funct 226(5):1363–1384. https://doi.org/10.1007/s00429-021-02265-0

    Article  Google Scholar 

  • Vigneau M, Beaucousin V, Hervé P-Y, Duffau H, Crivello F, Houde O, Mazoyer B, Tzourio-Mazoyer N (2006) Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage 30(4):1414–1432

    Article  CAS  Google Scholar 

  • Wang Y, Fernandez-Miranda JC, Verstynen T, Pathak S, Schneider W, Yeh F-C (2013) Rethinking the role of the middle longitudinal fascicle in language and auditory pathways. Cereb Cortex 23(10):2347–2356. https://doi.org/10.1093/cercor/bhs225

    Article  Google Scholar 

  • Wang X, Pathak S, Stefaneanu L, Yeh FC, Li S, Fernandez-Miranda JC (2016) Subcomponents and connectivity of the superior longitudinal fasciculus in the human brain. Brain Struct Funct 221(4):2075–2092. https://doi.org/10.1007/s00429-015-1028-5

    Article  Google Scholar 

  • Wu Y, Sun D, Wang Y, Wang Y (2016a) Subcomponents and connectivity of the inferior fronto-occipital fasciculus revealed by diffusion spectrum imaging fiber tracking. Front Neuroanat 10:88. https://doi.org/10.3389/fnana.2016.00088

    Article  Google Scholar 

  • Wu Y, Sun D, Wang Y, Wang Y, Wang Y (2016b) Tracing short connections of the temporo-parieto-occipital region in the human brain using diffusion spectrum imaging and fiber dissection. Brain Res 1646:152–159. https://doi.org/10.1016/j.brainres.2016.05.046

    Article  CAS  Google Scholar 

  • Xu Y, He Y, Bi Y (2017) A Tri-network Model of Human Semantic Processing. Front Psychol 8:1538. https://doi.org/10.3389/fpsyg.2017.01538

    Article  Google Scholar 

  • Yeatman JD, Weiner KS, Pestilli F, Rokem A, Mezer A, Wandell BA (2014) The vertical occipital fasciculus: a century of controversy resolved by in vivo measurements. Proc Natl Acad Sci U S A 111(48):E5214-5223. https://doi.org/10.1073/pnas.1418503111

    Article  CAS  Google Scholar 

  • Yeh FC (2020) Shape analysis of the human association pathways. Neuroimage 223:117329. https://doi.org/10.1016/j.neuroimage.2020.117329

    Article  Google Scholar 

  • Yeterian EH, Pandya DN (1993) Striatal connections of the parietal assoiation cortices in rhesus monkey. JCompNeurol 332:175–197

    CAS  Google Scholar 

  • Zaca D, Corsini F, Rozzanigo U, Dallabona M, Avesani P, Annicchiarico L, Zigiotto L, Faraca G, Chioffi F, Jovicich J, Sarubbo S (2018) Whole-brain network connectivity underlying the human speech articulation as emerged integrating direct electric stimulation, resting state fMRI and tractography. Front Hum Neurosci 12:405. https://doi.org/10.3389/fnhum.2018.00405

    Article  Google Scholar 

  • Zemmoura I, Blanchard E, Raynal PI, Rousselot-Denis C, Destrieux C, Velut S (2016) How Klingler’s dissection permits exploration of brain structural connectivity? An electron microscopy study of human white matter. Brain Struct Funct 221(5):2477–2486. https://doi.org/10.1007/s00429-015-1050-7

    Article  Google Scholar 

Download references

Funding

No particular funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Petit.

Ethics declarations

Competing interests

No conflict of interest for any authors.

Ethical approval

The present manuscript is not submitted elsewhere for simultaneous consideration; the submitted work is original and has not been published elsewhere in any form or language (partially or in whole); no re-use of material to avoid the concerns about text-recycling (self-plagiarism) in the present manuscript; the part of the study, including in vivo diffusion MRI data, was approved by the local ethics committee (CCPRB Basse-Normandie, France).The part of the study, including postmortem dissection data, was approved by the Ethical Committee of the Azienda Provinciale per i Servizi Sanitari, Trento, Italy (N° 06/2018).

Informed consent

For the part of the study involving in vivo diffusion MRI data, all participants gave written consent prior to participation in the study and no opposition to the publication of any type of results generated with their data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 45 KB)

429_2022_2551_MOESM2_ESM.pdf

Supplementary file2. Axial, sagittal and coronal sections of the 23 probabilistic maps of the present AG connectivity in MNI space. For a given tract, the color bar indicates the frequency of voxels containing the tract from 50 to 100% of the participants where the tract was frequently observed (close to the total of 411 participants, actc color scale) or from 10 to 100% of the participants where the tract was less frequently observed (plasma color scale). For example, for a tract observed in all participants, a value of 80 in a voxel means that 329 out of 411 individual tracts are passing through this voxel. L left, R right. Displays made with MRIcroGL (http://www.nitrc.org/projects/mricrogl/). (PDF 11495 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petit, L., Ali, K.M., Rheault, F. et al. The structural connectivity of the human angular gyrus as revealed by microdissection and diffusion tractography. Brain Struct Funct 228, 103–120 (2023). https://doi.org/10.1007/s00429-022-02551-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-022-02551-5

Keywords

Navigation