Skip to main content
Log in

Molecular understanding of anthocyanin biosynthesis activated by PAP1 and regulated by 2, 4-dichlorophenoxyacetic acid in engineered red Artemisia annua cells

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Eight promoters were cloned, from which AC and G-box cis-elements were identified. PAP1 enhanced the promoter activity. 2,4-D reduced the anthocyanin biosynthesis via downregulating the expression of the PAP1 transgene.

Abstract

Artemisia annua is an effective antimalarial medicinal crop. We have established anthocyanin-producing red cell cultures from this plant with the overexpression of Production of Anthocyanin Pigment 1 (PAP1) encoding a R2R3MYB transcription factor. To understand the molecular mechanism by which PAP1 activated the entire anthocyanin pathway, we mined the genomic sequences of A. annua and obtained eight promoters of the anthocyanin pathway genes. Sequence analysis identified four types of AC cis-elements from six promoters, the MYB response elements (MRE) bound by PAP1. In addition, six promoters were determined to have at least one G-box cis-element. Eight promoters were cloned for activity analysis. Dual luciferase assays showed that PAP1 significantly enhanced the promoting activity of seven promoters, indicating that PAP1 turned on the biosynthesis of anthocyanins via the activation of these pathway gene expression. To understand how 2,4-dichlorophenoxyacetic acid (2,4-D), an auxin, regulates the PAP1-activated anthocyanin biosynthesis, five different concentrations (0, 0.05, 0.5, 2.5, and 5 µM) were tested to characterize anthocyanin production and profiles. The resulting data showed that the concentrations tested decreased the fresh weight of callus growth, anthocyanin levels, and the production of anthocyanins per Petri dish. HPLC-qTOF-MS/MS-based profiling showed that these concentrations did not alter anthocyanin profiles. Real-time RT-PCR was completed to characterize the expression PAP1 and four representative pathway genes. The results showed that the five concentrations reduced the expression levels of the constitutive PAP1 transgene and three pathway genes significantly and eliminated the expression of the chalcone synthase gene either significantly or slightly. These data indicate that the constitutive PAP1 expression depends on gradients added in the medium. Based on these findings, the regulation of 2,4-D is discussed for anthocyanin engineering in red cells of A. annua.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

NAA:

1-Naphthaleneacetic acid

PAP1:

Production of anthocyanin pigment 1

4CL:

4-coumaroyl CoA ligase

ANS:

Anthocyanidin synthase

C4H:

Cinnamate 4-hydroxylase

CHI:

Chalcone isomerase

CHS:

Chalcone synthase

DFR:

Dihydroflavonol reductase

F3H:

Flavanone 3-hydroxylase

F3′H:

Flavonoid 3′-hydroxylase

References

  • Al Qurraan AF, Sawwan JS, Al Abdallat AM (2012) Analysis of phenylalanine ammonia-lyase gene expression in callus cells of hawthorn (Crataegus aronia L.). J Food Agric Environ 10(4):572–576

    CAS  Google Scholar 

  • Alejos-Gonzalez F, Qu GS, Zhou LL, Saravitz CH, Shurtleff JL, Xie DY (2011) Characterization of development and artemisinin biosynthesis in self-pollinated Artemisia annua plants. Planta 234(4):685–697. https://doi.org/10.1007/s00425-011-1430-z

    Article  CAS  PubMed  Google Scholar 

  • Asano S, Otobe K (2011) Production of phytochemicals by using habituated and long-term cultured cells. Plant Biotechnol 28(1):51–62. https://doi.org/10.5511/plantbiotechnology.10.1109a

    Article  Google Scholar 

  • Ashley EA, White NJ (2005) Artemisinin-based combinations. Curr Opin Infect Dis 18(6):531–536. https://doi.org/10.1097/01.qco.0000186848.46417.6c

    Article  CAS  PubMed  Google Scholar 

  • Ball E (1967) Production of a group of anthocyanins in callus culture under influence of an auxin. Plant Physiol S 42:S24

    Google Scholar 

  • Bao Do C, Cormier F (1991) Effects of low nitrate and high sugar concentrations on anthocyanin content and composition of grape (Vitis vinifera L.) cell suspension. Plant Cell Rep 9(9):500–504

    Article  CAS  PubMed  Google Scholar 

  • Barrios J, Cordero CP, Aristizabal F, Heredia FJ, Morales AL, Osorio C (2010) Chemical analysis and screening as anticancer agent of anthocyanin-rich extract from Uva Caimarona (Pourouma cecropiifolia Mart.) fruit. J Agric Food Chem 58(4):2100–2110. https://doi.org/10.1021/jf9041497

    Article  CAS  PubMed  Google Scholar 

  • Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12(12):2383–2394. https://doi.org/10.1105/tpc.12.12.2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowen-Forbes CS, Zhang YJ, Nair MG (2010) Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits. J Food Compos Anal 23(6):554–560. https://doi.org/10.1016/j.jfca.2009.08.012

    Article  CAS  Google Scholar 

  • Brown GD (2010) The biosynthesis of artemisinin (Qinghaosu) and the phytochemistry of Artemisia annua L. (Qinghao). Molecules 15(11):7603–7698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butelli E, Titta L, Giorgio M, Mock H-P, Matros A, Peterek S, Schijlen EGWM, Hall RD, Bovy AG, Luo J, Martin C (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotech 26(11):1301–1308. https://doi.org/10.1038/nbt.1506

    Article  CAS  Google Scholar 

  • Cormier F, Do CB, Moresoli C, Archambault J, Chavarie C, Chaouki F, Pépin M-F (1992) Anthocyanin release from grape (Vitis vinifera L.) cell suspension. Biotechnol Lett 14(11):1029

    Article  CAS  Google Scholar 

  • Dai J, Gupte A, Gates L, Mumper RJ (2009) A comprehensive study of anthocyanin-containing extracts from selected blackberry cultivars: extraction methods, stability, anticancer properties and mechanisms. Food Chem Toxicol 47(4):837–847. https://doi.org/10.1016/j.fct.2009.01.016

    Article  CAS  PubMed  Google Scholar 

  • Denev P, Ciz M, Ambrozova G, Lojek A, Yanakieva I, Kratchanova M (2010) Solid-phase extraction of berries’ anthocyanins and evaluation of their antioxidative properties. Food Chem 123(4):1055–1061. https://doi.org/10.1016/j.foodchem.2010.05.061

    Article  CAS  Google Scholar 

  • Do CB, Cormier F (1991a) Effects of high ammonium concentrations on growth and anthocyanin formation in grape (Vitis vinifera L.) cell suspension cultured in a production medium. Plant Cell Tiss Org Cult 27(2):169–174

    Article  Google Scholar 

  • Do CB, Cormier F (1991b) Accumulation of peonidin 3-glucoside enhanced by osmotic stress in grape (Vitis vinifera L.) cell suspension. Plant Cell Tiss Org Cult 24(1):49

    Article  CAS  Google Scholar 

  • Dougall DK, Johnson JM, Whitten GH (1980) A clonal analysis of anthocyanin accumulation by cell cultures of wild carrot. Planta 149(3):292–297

    Article  CAS  PubMed  Google Scholar 

  • Dougall DK, LaBrake S, Whitten GH (1983) Growth and anthocyanin accumulation rates of carrot suspension cultures grown with excess nutrients after semicontinuous culture with different limiting nutrients at several dilution rates, pHs, and temperatures. Biotechnol Bioeng 25(2):581–594

    Article  CAS  PubMed  Google Scholar 

  • Faria A, Pestana D, Teixeira D, de Freitas V, Mateus N, Calhau C (2010) Blueberry anthocyanins and pyruvic acid adducts: Anticancer properties in breast cancer cell lines. Phytother Res 24(12):1862–1869. https://doi.org/10.1002/ptr.3213

    Article  CAS  PubMed  Google Scholar 

  • Gatica-Arias A, Farag MA, Stanke M, Matousek J, Wessjohann L, Weber G (2012) Flavonoid production in transgenic hop (Humulus lupulus L.) altered by PAP1/MYB75 from Arabidopsis thaliana L. Plant Cell Rep 31(1):111–119. https://doi.org/10.1007/s00299-011-1144-5

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53(5):814–827. https://doi.org/10.1111/j.1365-313X.2007.03373.x

    Article  CAS  PubMed  Google Scholar 

  • Hall RD, Yeoman MM (1986a) Factors determining anthocyanin yield in cell cultures of Catharanthus roseus (L.) G Don. New Phytol 103(1):33–43

    Article  CAS  Google Scholar 

  • Hall RD, Yeoman MM (1986b) Temporal and spatial heterogeneity in the accumulation of anthocyanins in cell cultures of Catharanthus roseus (L.) G. Don. J Exp Bot 37(1):48–60. https://doi.org/10.1093/jxb/37.1.48

    Article  CAS  Google Scholar 

  • He X, Li Y, Lawson D, Xie D-Y (2017) Metabolic engineering of anthocyanins in dark tobacco varieties. Physiol Plant 159:2–12

    Article  CAS  PubMed  Google Scholar 

  • Hirner AA, Seitz HU (2000) Isoforms of chalcone synthase in Daucus carota L. and their differential expression in organs from the European wild carrot and in ultraviolet-A-irradiated cell cultures. Planta 210(6):993–998

    Article  CAS  PubMed  Google Scholar 

  • Judd R, Dong Y, Sun X, Zhu Y, Li M, Xie D-Y (2023) Metabolic engineering of the anthocyanin biosynthetic pathway in Artemisia annua and relation to the expression of the artemisinin biosynthetic pathway. Planta 257(3):63. https://doi.org/10.1007/s00425-023-04091-6

    Article  CAS  PubMed  Google Scholar 

  • Kano M, Takayanagi T, Harada K, Makino K, Ishikawa F (2005) Antioxidative activity of anthocyanins from purple sweet potato, Ipomoera batatas cultivar Ayamurasaki. Bioscience Biotechnol Biochem 69(5):979–988

    Article  CAS  Google Scholar 

  • Li M, He X, La Hovary C, Zhu Y, Dong Y, Liu S, Xing H, Liu Y, Jie Y, Ma D, Yuzuak S, Xie D-Y (2022) A de novo regulation design shows an effectiveness in altering plant secondary metabolism. J Adv Res 37:43–60. https://doi.org/10.1016/j.jare.2021.06.017

    Article  CAS  PubMed  Google Scholar 

  • Liao YH, Tang CY, Fang RJ, Zhu Y, Wu FY, Zhao PZ, Huang SC, Wang XM, Pang YJ, Yang RW, Lu GH, Qi JL, Yang YH (2018) Transcriptome analysis reveals that blocking the ethylene signal transduction is a key point for 2,4-D inhibited shikonin biosynthesis in Lithosperilium erythrorhizon (Boraginaceae). Pakistan J Bot 50(4):1451–1458

    CAS  Google Scholar 

  • Liao BS, Shen XF, Xiang L, Guo S, Chen SY, Meng Y, Liang Y, Ding DD, Bai JQ, Zhang D, Czechowski T, Li Y, Yao H, Ma TY, Howard C, Sun C, Liu HT, Liu JS, Pei J, Gao JH, Wang JG, Qiu XH, Huang ZH, Li HY, Yuan L, Wei JH, Graham I, Xu J, Zhang BL, Chen SL (2022) Allele-aware chromosome-level genome assembly of Artemisia annua reveals the correlation between ADS expansion and artemisinin yield. Mol Plant 15(8):1310–1328. https://doi.org/10.1016/j.molp.2022.05.013

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Shi MZ, Xie DY (2014) Regulation of anthocyanin biosynthesis in Arabidopsis thaliana red pap1-D cells metabolically programmed by auxins. Planta 239(4):765–781. https://doi.org/10.1007/s00425-013-2011-0

    Article  CAS  PubMed  Google Scholar 

  • Makunga NP, van Staden J, Cress WA (1997) The effect of light and 2,4-D on anthocyanin production in Oxalis reclinata callus. Plant Growth Regul 23(3):153–158

    Article  CAS  Google Scholar 

  • Meyer HJ, Van Staden J (1995) The in vitro productin of an anthocyanin from callus-cultures of Oxalis linearis. Plant Cell Tiss Org Cult 40(1):55–58. https://doi.org/10.1007/bf00041119

    Article  CAS  Google Scholar 

  • Mori T, Sakurai M, Seki M, Furusaki S (1994) Use of auxin and cytokinin to regulate anthocyanin production and composition in suspension-cultures of strawberry cell. J Sci Food Agric 65(3):271–276. https://doi.org/10.1002/jsfa.2740650303

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Narayan MS, Thimmaraju R, Bhagyalakshmi N (2005) Interplay of growth regulators during solid-state and liquid-state batch cultivation of anthocyanin producing cell line of Daucus carota. Process Biochem 40(1):351–358. https://doi.org/10.1016/j.procbio.2004.01.009

    Article  CAS  Google Scholar 

  • Nosten F, White NJ (2007) Artemisinin-based combination treatment of falciparum malaria. Am J Trop Med Hyg 77(6 Suppl):181–192

    Article  CAS  PubMed  Google Scholar 

  • Ozeki Y, Komamine A (1985) Changes in activities of enzymes involved in general phenylpropanoid metabolism during the induction and reduction of anthocyanin synthesis in a carrot suspension culture as regulated by 2,4-D. Plant Cell Physiol 26(5):903–911

    CAS  Google Scholar 

  • Ozeki Y, Komamine A (1986) Effects of growth regulators on the induction of anthocyanin synthesis in carrot suspension cultures. Plant Cell Physiol 27(7):1361–1368

    Article  CAS  Google Scholar 

  • Ozeki Y, Matsui K, Sakuta M-a, Matsuoka M, Ohashi Y, Kano-Murakami Y, Yamamoto N, Tanaka Y (1990) Differential regulation of phenylalanine ammonia-lyase genes during anthocyanin synthesis and by transfer effect in carrot cell suspension cultures. Physiol Plant 80(3):379–387. https://doi.org/10.1111/j.1399-3054.1990.tb00056.x

    Article  CAS  Google Scholar 

  • Ozeki Y, Ito Y, Sasaki N, Oyanagi M, Akimoto H, Chikagawa Y, Takeda J (2000) Phenylalanine ammonia-lyase genes involved in anthocyanin synthesis and the regulation of its expression in suspension cultured carrot cells. J Plant Res 113(1111):319–326. https://doi.org/10.1007/pl00013893

    Article  CAS  Google Scholar 

  • Pala M, Yadava R, Goutamb U, Chaudhurya A (2022) A simple protocol for high frequency plant regeneration and enhancing Shikonin production from callus cultures in Arnebia hispidissima. South Afr J Bot 149:781–788. https://doi.org/10.1016/j.sajb.2022.06.028

    Article  CAS  Google Scholar 

  • Peel GJ, Pang Y, Modolo LV, Dixon RA (2009) The LAP1 MYB transcription factor orchestrates anthocyanidin biosynthesis and glycosylation in Medicago. Plant J 59(1):136–149

    Article  CAS  PubMed  Google Scholar 

  • Pool-Zobel BL, Bub A, Schröder N, Rechkemmer G (1999) Anthocyanins are potent antioxidants in model systems but do not reduce endogenous oxidative DNA damage in human colon cells. Eur J Nutr 38(5):227–234

    Article  CAS  PubMed  Google Scholar 

  • Qinghao-Kanglue-Hezuo-Yanjiu-Zu, (1977) Artemisinin: a novel sesquiterpene lactone. Chin Sci Bull 3:142

    Google Scholar 

  • Ramsay NA, Glover BJ (2005) MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci 10(2):63–70

    Article  CAS  PubMed  Google Scholar 

  • Robbins MP, Evans TE, Morris P (1996) The effect of plant growth regulators on growth, morphology and condensed tannin accumulation in transformed root cultures of Lotus corniculatus. Plant Cell Tiss Org Cult 44(3):219

    Article  CAS  Google Scholar 

  • Rose A, Gläßgen WE, Hopp W, Seitz HU (1996) Purification and characterization of glycosyltransferases involved in anthocyanin biosynthesis in cell-suspension cultures of Daucus carota L. Planta 198(3):397–403

    Article  CAS  PubMed  Google Scholar 

  • Shen Q, Zhang LD, Liao ZH, Wang SY, Yan TX, Shi P, Liu M, Fu XQ, Pan QF, Wang YL, Lv ZY, Lu X, Zhang FY, Jiang WM, Ma YN, Chen MH, Hao XL, Li L, Tang YL, Lv G, Zhou Y, Sun XF, Brodelius PE, Rose JKC, Tang KX (2018) The genome of Artemisia annua provides insight into the evolution of Asteraceae family and artemisinin biosynthesis. Mol Plant 11(6):776–788. https://doi.org/10.1016/j.molp.2018.03.015

    Article  CAS  PubMed  Google Scholar 

  • Shi M-Z, Xie D-Y (2010) Features of anthocyanin biosynthesis in pap1-D and wild-type Arabidopsis thaliana plants grown in different light intensity and culture media conditions. Planta 231:1385–1400

    Article  CAS  PubMed  Google Scholar 

  • Shi MZ, Xie DY (2011) Engineering of red cells of Arabidopsis thaliana and comparative genome-wide gene expression analysis of red cells versus wild-type cells. Planta 233(4):787–805. https://doi.org/10.1007/s00425-010-1335-2

    Article  CAS  PubMed  Google Scholar 

  • Shimizu Y, Imada T, Zhang HL, Tanaka R, Ohno T, Shimomura K (2010) Identification of novel poly-acylated anthocyanins from Gynura bicolor leaves and their antioxidative activity. Food Sci Technol Res 16(5):479–486. https://doi.org/10.3136/fstr.16.479

    Article  CAS  Google Scholar 

  • Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P (2006) Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol 140(2):637–646. https://doi.org/10.1104/pp.105.072579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stickland RG, Sunderland N (1972) Photocontrol of growth, and of anthocyanin and chlorogenic acid production in cultured callus tissues of Haplopappus gracilis. Ann Bot 36(4):671–685

    Article  CAS  Google Scholar 

  • Tsuda T, Watanabe M, Ohshima K, Norinobu S, Choi SW, Kawakishi S, Osawa T (1994) Antioxidative activity of the anthocyanin pigments cyanidin 3-O-beta-glucoside and cyanidin. J Agric Food Chem 42(11):2407–2410. https://doi.org/10.1021/jf00047a009

    Article  CAS  Google Scholar 

  • Tu Y (2011) The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat Med 17(10):1217–1220

    Article  CAS  PubMed  Google Scholar 

  • Wellmann E, Hrazdina G, Grisebach H (1976) Induction of anthocyanin formation and of enzymes related to its biosynthesis by UV light in cell cultures of Haplopappus gracilis. Phytochemistry 15:913–915

    Article  CAS  Google Scholar 

  • WHO (2006) WHO monograph on good agricultural and collection practices (GACP) for Artemisia annua L. Edited by World Health Organization

  • WHO (2010) Good procurement practices for artemisinin-based antimalarial medicines. WHO Global Malaria Programme

  • Xie D-Y, Shi M-Z (2012) Differentiation of programmed Arabidopsis cells. Bioeng Bugs 3(1):54–59

    PubMed  PubMed Central  Google Scholar 

  • Xie D-Y, Sharma SB, Wright E, Wang Z-Y, Dixon RA (2006) Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor. Plant J 45(6):895–907. https://doi.org/10.1111/j.1365-313X.2006.02655.x

    Article  CAS  PubMed  Google Scholar 

  • Xie D-Y, Ma D-M, Judd R, Jones AL (2016) Artemisinin biosynthesis in Artemisia annua and metabolic engineering: questions, challenges, and perspectives. Phytochem Rev 15(6):1093–1114. https://doi.org/10.1007/s11101-016-9480-2

    Article  CAS  Google Scholar 

  • Yoshihiro O, Atsushi K (1985) Effects of inoculum density, zeatin and sucrose on anthocyanin accumulation in a carrot suspension culture. Plant Cell Tiss Org Cult 5(1):45–53

    Article  Google Scholar 

  • Yousef GG, Seigler DS, Grusak MA, Rogers RB, Knight CT, Kraft TF, Erdman JWJ, Lila MA (2004) Biosynthesis and characterization of 14C-enriched flavonoid fractions from plant cell suspension cultures. J Agric Food Chem 52(5):1138–1145

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Gonzalez A, Zhao MZ, Payne CT, Lloyd A (2003) A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130(20):4859–4869. https://doi.org/10.1242/dev.00681

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Baloch SK, Kong LR, Zhang WJ, Zou AL, Wang XM, Qi JL, Yang YH (2014) Molecular cloning, characterization, and expression analysis of LeMYB1 from Lithospermum erythrorhizon. Biol Plant 58(3):436–444. https://doi.org/10.1007/s10535-014-0411-z

    Article  CAS  Google Scholar 

  • Zhou L-L, Zeng H-N, Shi M-Z, Xie D-Y (2008) Development of tobacco callus cultures over expressing Arabidopsis PAP1/MYB75 transcription factor and characterization of anthocyanin biosynthesis. Planta 229:37–51

    Article  CAS  PubMed  Google Scholar 

  • Zhou LL, Shi MZ, Xie DY (2012) Regulation of anthocyanin biosynthesis by nitrogen in TTG1-GL3/TT8-PAP1-programmed red cells of Arabidopsis thaliana. Planta 236(3):825–837. https://doi.org/10.1007/s00425-012-1674-2

    Article  CAS  PubMed  Google Scholar 

  • Zuluaga DL, Gonzali S, Loreti E, Pucciariello C, Degl’Innocenti ED, Guidi L, Alpi A, Perata P (2008) Arabidopsis thaliana MYB75/PAP1 transcription factor induces anthocyanin production in transgenic tomato plants. Funct Plant Biol 35(7):606–618. https://doi.org/10.1071/FP08021

    Article  CAS  PubMed  Google Scholar 

  • Zvi MMB, Shklarman E, Masci T, Kalev H, Debener T, Shafir S, Ovadis M, Vainstein A (2012) PAP1 transcription factor enhances production of phenylpropanoid and terpenoid scent compounds in rose flowers. New Phytol 195(2):335–345. https://doi.org/10.1111/j.14698137.2012.04161.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank China Scholar Council for supporting Yilun Dong’s PhD Exchange Scholarship and Yue Zhu PhD study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Yu Xie.

Ethics declarations

Conflict of interest

Not applicable.

Data availability

All data that support our findings reported in this study are available in the supplementary materials of this article.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1083 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Li, M., Cruz, B. et al. Molecular understanding of anthocyanin biosynthesis activated by PAP1 and regulated by 2, 4-dichlorophenoxyacetic acid in engineered red Artemisia annua cells. Planta 258, 75 (2023). https://doi.org/10.1007/s00425-023-04230-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-023-04230-z

Keywords

Navigation