Skip to main content

Advertisement

Log in

Saline-alkali stress tolerance is enhanced by MhPR1 in Malus halliana leaves as shown by transcriptomic analyses

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

qRT-PCR analysis showed that MhPR1 was strongly induced by saline-alkali stress. Overexpression of MhPR1 enhanced tolerance to saline-alkali stress in transgenic tobacco (Nicotiana tabacum L.) and apple calli.

Abstract: Soil salinization seriously threaten apple growth in Northwest loess plateau of China. Malus halliana has developed special system to adapt to saline-alkali environmental stress. To obtain a more detailed understanding of the adaptation mechanisms involved in M. halliana, a transcriptomic approach was used to analyze the leaves’ pathways in the stress and its regulatory mechanisms. RNA-Seq showed that among the 16,246 investigated unigenes under saline-alkali stress, 7268 genes were up-regulated and 8978 genes were down-regulated. KEGG analysis indicated that most of the enriched saline-alkali-responsive genes were mainly involved in plant hormone, calcium signal transduction, amino acids, carotenoid and flavonoids biosynthesis, carbon and phenylalanine metabolism, and other secondary metabolites. Expression profile analysis by quantitative real-time PCR confirmed that the maximum up-regulation of MhPR1 under saline-alkali stress was 7.1 folds in leaves. Overexpression of MhPR1 enhanced tolerance to saline-alkali stress in transgenic tobacco (Nicotiana tabacum L.) and apple calli. Taken together, our results demonstrate that MhPR1 encodes a saline-alkali-responsive transcriptional activator and provide valuable information for further study of PR1 functions in apple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig.15
Fig. 16
Fig. 17
Fig.18
Fig.19
Fig.20

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article and its additional files. The collection of samples has no permissions.

Abbreviations

CAT:

Catalase

CK:

Control plants

COI-1:

Coronatine-insensitive protein 1

POD:

Peroxidase

PR:

Pathogenesis-related protein

ROS:

Reactive oxygen species

SA:

Salicylic acid

SOD:

Superoxide dismutase

T:

Saline-alkali stressed plants

References

  • Abdallah SB, Aung B, Amyot L, Lalin I, Lachaal M, Karray-Bouraoui N, Hannoufa A (2016) Salt stress (NaCl) affects plant growth and branch pathways of carotenoid and flavonoid biosyntheses in Solanum nigrum. Acta Physiol Plant 38(3):1–13

    Google Scholar 

  • Affenzeller MJ, Darehshouri A, Andosch A, Lütz C, Lütz-Meindl U (2009) Salt stress-induced cell death in the unicellular green alga micrasterias denticulata. J Exp Bot 60(3):939–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal P, Agarwal PK (2014) Pathogenesis related-10 proteins are small, structurally similar but with diverse role in stress signaling. Mol Biol Rep 41(2):599–611

    Article  CAS  PubMed  Google Scholar 

  • Aslam RE, Williams L, Bhatti MF, Virk N (2017) Genome-wide analysis of wheat calcium ATPases and potential role of selected ACAs and ECAs in calcium stress. BMC Plant Biol 17(1):174–187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bais HP, Ravishankar GA (2002) Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell Tiss Organ Cult 69(1):1–34

    Article  CAS  Google Scholar 

  • Bassil E, Blumwald E (2014) The ins and outs of intracellular ion homeostasis: NHX-type cation/ H1 transporters. Curr Opin Plant Biol 22:1–6

    Article  CAS  PubMed  Google Scholar 

  • Bi YM, Kenton P, Mur L, Darby R, Draper J (1995) Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression. Plant J 8(2):235–245

    Article  CAS  PubMed  Google Scholar 

  • de Mira NVM, Massaretto IL, Pascual CDSCI, Marquez UML (2009) Comparative study of phenolic compounds in different Brazilian rice (Oryza sativa L.) genotypes. J Food Compos Anal 22(5):405–409

    Article  CAS  Google Scholar 

  • Du CX, Fan HF, Guo SR, Tezuka T, Li J (2010) Proteomic analysis of cucumber seedling roots subjected to salt stress. Phytochemistry 71(13):1450–1459

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Noutoshi Y (2006) Crosstalk between abiotic and biotic stress responses:a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9(4):436–442

    Article  PubMed  Google Scholar 

  • Götz T, Sandmann G, Römer S (2002) Expression of a bacterial carotene hydroxylase gene (crtZ) enhances UV tolerance in tobacco. Plant Mol Biol 50(1):127–140

    Article  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom 256(1):1–18

    Google Scholar 

  • Hu DG, Li M, Luo H, Dong QL, Yao YX, You CX, Hao YJ (2012) Molecular cloning and functional characterization of MdSOS2 reveals its involvement in salt tolerance in apple callus and Arabidopsis. Plant Cell Rep 31(4):713–722

    Article  CAS  PubMed  Google Scholar 

  • Hussein MM, Faham SY, Alva AK (2014) Role of foliar application of nicotinic acid and tryptophan on onion plants response to salinity stress. J Agric Sci 6(8):41–54

    Google Scholar 

  • Jia XM, Wang H, Svetla S, Zhu YF, Hu Y, Cheng L, Zhao T, Wang YX (2019) Comparative physiological responses and adaptive strategies of apple Malus halliana to salt, alkali and saline-alkali stress. Sci Hortic 245:54–162

    Article  CAS  Google Scholar 

  • Jia XM, Zhu YF, Zhang R, Zhu ZL, Zhao T, Wang YX (2020) Ionomic and metabolomic analyses reveal the resistance response mechanism to saline-alkali stress in Malus halliana seedlings. Plant Physiol Biochem 147:77–90

    Article  CAS  PubMed  Google Scholar 

  • Jin XQ, Liu T, Xu JJ, Gao ZX, Hu XH (2019) Exogenous GABA enhances muskmelon tolerance to salinity-alkalinity stress by regulating redox balance and chlorophyll biosynthesis. BMC Plant Biol 19(1):48–62

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamimoto Y, Terasaka K, Hamamoto M, Takanashi K, Fukuda S, Shitan N, Sugiyama A, Suzuki H, Shibata D, Wang B (2012) Arabidopsis ABCB21 is a facultative auxin importer/exporter regulated by cytoplasmic auxin concentration. Plant Cell Physiol 53(12):2090–2100

    Article  CAS  PubMed  Google Scholar 

  • Karuppanapandian T, Moon JC, Kim C, Manoharan K, Kim W (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci 5(6):709–725

    CAS  Google Scholar 

  • Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152

    Article  CAS  PubMed  Google Scholar 

  • Kulecka M, Wierzbicka A, Paziewska A, Mikula M, Habior A, Janczyk W, Ostrowski J (2017) A heterozygous mutation in GOT1 is associated with familial macro-aspartate aminotransferase. J Hepatol 67(5):1026–1030

    Article  CAS  PubMed  Google Scholar 

  • Lakshman PN, Toyokawa Y, Tachibana S, Toyama H, Taira T, Yasuda M (2011) Reducing the antigenicity of milk whey protein using acid proteinases from Monascus pilosus. Process Biochem 46(3):806–810

    Article  CAS  Google Scholar 

  • Leckie CP, McAinsh MR, Allen GJ (1998) Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose. Proc Natl Acad Sci USA 95(26):15837–15842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehner A, Grimm M, Rattei T, Ruepp A, Frishman D, Manzardo GG, Stephan R (2006) Cloning and characterization of Enterobacter sakazakii pigment genes and in situ spectroscopic analysis of the pigment. FEMS Microbiol Lett 265(2):244–248

    Article  CAS  PubMed  Google Scholar 

  • Li H, Wang L, Yang ZM (2015) Co-expression analysis reveals a group of genes potentially involved in regulation of plant response to iron-defciency. Gene 554:16–24

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Huang W, Zhan J, Pan Q (2005) Systemic induction of H2O2 in pea seedlings pretreated by wounding and exogenous jasmonic acid. Sci China, Ser C Life Sci 48(3):202–212

    Article  CAS  Google Scholar 

  • Liu WX, Zhang FC, Zhang WZ, Song LF, Wu WH, Chen YF (2013) Arabidopsis Di19 functions as a transcription factor and modulates PR1, PR2, and PR5 expression in response to drought stress. Mol Plant 6(5):1487–1502

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Kang C, Wang X, Bao G (2016) Physiological and morphological responses of Leymus chinensis to saline-alkali stress. Grassl Sci 61:217–226

    Article  CAS  Google Scholar 

  • Liu W, Li Q, Wang Y, Wu T, Yang Y, Zhang X (2017) Ethylene response factor AtERF72 negatively regulates, Arabidopsis thaliana, response to iron defciency. Biochem Biophys Res Commun 491:862–868

    Article  CAS  PubMed  Google Scholar 

  • Lofke C, Zwiewka M, Heilmann I (2013) Asymmetric gibberellin signaling regulates vacuolar trafficking of PIN auxin transporters during root gravitropism. Proc Natl Acad Sci USA 110(9):3627–3632

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma YC, Wang JY, Zhong Y, Geng F, Crame GR, Cheng ZM (2015) Subfunctionalization of cation/proton antiporter 1 genes in grapevine in response to salt stress in different organs. Hortic Res 2:15031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manishankar P, Wang N, Köster P, Alatar AA, Kudla J (2018) Calcium signaling during salt stress and in the regulation of ion homeostasis. J Exp Bot 69(17):4215–4226

    Article  CAS  Google Scholar 

  • Martínez-Cuenca MR, Iglesias DJ, Forner-Giner M, Primo-Millo E, Legaz F (2013) The effect of sodium bicarbonate on plant performance and iron acquisition system of FA-5 (Forner-Alcaide 5) citrus seedlings. Acta Physiol Plant 35(9):2833–2845

    Article  CAS  Google Scholar 

  • Meng LS, Wang YB, Yao SQ (2015) Arabidopsis AINTEGUMENTA mediates salt tolerance by trans-repressing SCABP8. J Cell Sci 128(15):2919–2927

    CAS  PubMed  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33(4):453–467

    Article  CAS  PubMed  Google Scholar 

  • Nawrocka J, Małolepsza U (2013) Diversity in plant systemic resistance induced by trichoderma. Biol Control 67(2):149–156

    Article  Google Scholar 

  • Ozgur R, Uzilday B, Sekmen AH, Turkan I (2013) Reactive oxygen species regulation and antioxidant defence in halophytes. Funct Plant Biol 40(9):832–847

    Article  CAS  PubMed  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants:a review. Ecotoxicol Environ Saf 60(3):324–349

    Article  CAS  PubMed  Google Scholar 

  • Pi E, Zhu C, Fan W, Huang Y, Qu L, Li Y, Du L (2018) Quantitative phosphoproteomic and metabolomic analyses reveal GmMYB173 optimizes flavonoid metabolism in soybean under salt stress. Mol Cell Proteom 17(6):1209–1224

    Article  CAS  Google Scholar 

  • Radanielson AM, Angeles O, Li T (2018) Describing the physiological responses of different rice genotypes to salt stress using sigmoid and piecewise linear functions. Field Crops Res 220:46–56

    Article  PubMed  PubMed Central  Google Scholar 

  • Ray SD (2017) Ca2+, the miracle molecule in plant hormone signaling during abiotic stress. Mech Plant Horm Signal Stress 2:45–90

    Google Scholar 

  • Sanchez DH, Pieckenstain FL, Escaray F, Erban A, Kraemer UTE, Udvardi MK, Kopka J (2011) Comparative ionomics and metabolomics in extremophile and glycophytic Lotus species under salt stress challenge the metabolic pre-adaptation hypothesis. Plant Cell Environ 34(4):605–617

    Article  CAS  PubMed  Google Scholar 

  • Santos SD, Iuliano O, Ribeiro L, Veran J, Ferreira JS, Rio P, Carvalho AL (2012) Contactin-associated protein 1 (Caspr1) regulates the traffic and synaptic content ofα-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors. J Biol Chem 87(9):6868–6877

    Article  CAS  Google Scholar 

  • Sarowar S, Kim YJ, Kim EN, Kim KD, Hwang BK, Islam R, Shin JS (2005) Overexpression of a pepper basic pathogenesis-related protein 1 gene in tobacco plants enhances resistance to heavy metal and pathogen stresses. Plant Cell Rep 24(4):216–224

    Article  CAS  PubMed  Google Scholar 

  • Seo YB, Choi SS, Nam SW, Lee JH, Kim YT (2009) Cloning and characterization of the zeaxanthin glucosyltransferase gene (crtX) from the astaxanthin-producing marine bacterium Paracoccus haeundaensis. J Microbiol Biotechnol 19(12):1542–1546

    Article  CAS  PubMed  Google Scholar 

  • Shen JZ, Zou ZW, Zhang XZ, Zhou L, Wang YH, Fang WP, Zhu XJ (2018) Metabolic analyses reveal different mechanisms of leaf color change in two purple-leaf tea plant (Camellia sinensis L.) cultivars. Hortic Res 5(1):7–20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Subrahmanyam D (2008) Effects of chromium toxicity on leaf photosynthetic characteristics and oxidative changes in wheat (Triticum aestivum L.). Photosynthetica 46:339–345

    Article  CAS  Google Scholar 

  • Sun L, Wang YP, Chen P, Ren J, Ji K, Li Q, Li P, Dai SJ, Leng P (2011) Transcriptional regulation of SlPYL, SlPP2C, and SlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress. J Exp Bot 62(15):5659–5669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van LC, Rep M, Pieterse MJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44(1):135–162

    Article  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16(2):123–132

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Balazadeh S, Tohge T, Erban A, Giavalisco P, Kopka J, Mueller-Roeber B, R.Fernie A, Hoefgen R (2013) Comprehensive dissection of spatiotemporal metabolic shifts in primary, secondary, and lipid metabolism during developmental senescence in arabidopsis. Plant Physiol 162:1290–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Kim SG, Kang KY (2016) Overexpression of a pathogenesis-related protein 10 enhances biotic and abiotic stress tolerance in rice. Plant Pathol J 32(6):552–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu JX, Cao JY, Su M, Feng GZ, Xu YH, Yi HL (2019) Genome-wide comprehensive analysis of transcriptomes and small RNAs offers insights into the molecular mechanism of alkaline stress tolerance in a citrus rootstock. Hortic Res 6:33–51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yi ZL, Xu L, Huang MJ (2010) Research progress of calcium signaling system and plant hormone signaling. China Agron Bull 26(15):221–226

    Google Scholar 

  • Zhang J, Du X, Wang Q, Chen X, Lv D, Xu K, Zhang Z (2010) Expression of pathogenesis related genes in response to salicylic acid, methyl jasmonate and 1-aminocyclopropane-1-carboxylic acid in Malus hupehensis (Pamp) Rehd. BMC Res Notes 3(1):1–6

    Article  Google Scholar 

  • Zhang YH, Fang JP, Wu XN, Dong LY (2018) Na+/K+ balance and transport regulatory mechanisms in weedy and cultivated rice (Oryza sativa L.) under salt stress. BMC Plant Biol 18(1):375–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53(1):247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167(2):313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu YF, Wu YX, Hu Y, Jia XM, Zhao T, Cheng L, Wang YX (2019) Tolerance of two apple rootstocks to short-term salt stress:focus on chlorophyll degradation, photosynthesis, hormone and leaf ultrastructures. Acta Physiol Plant 41(6):1–14

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31960581).

Funding

National Natural Science Foundation of China, 31960581,Yan xiu Wang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanxiu Wang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests potential conficts of interest.

Consent for publication

Research not involving Human Participants and/or Animals. All authors consent for publication.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Zhang, Z., Wang, S. et al. Saline-alkali stress tolerance is enhanced by MhPR1 in Malus halliana leaves as shown by transcriptomic analyses. Planta 256, 51 (2022). https://doi.org/10.1007/s00425-022-03940-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-022-03940-0

Keywords

Navigation