Skip to main content
Log in

Progressive programmed cell death inwards across the anther wall in male sterile flowers of the gynodioecious plant Plantago lanceolata

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

A cell death signal is perceived and responded to by epidermal cells first before being conveyed inwards across the anther wall in male sterile Plantago lanceolata flowers.

In gynodioecious plants, floral phenotype is determined by an interplay between cytoplasmic male sterility (CMS)-promoting factors and fertility-restoring genes segregating in the nuclear background. Plantago lanceolata exhibits at least four different sterilizing cytoplasms. MS1, a “brown-anther” male sterile phenotype, segregates with a CMSI cytoplasm and a non-restoring nuclear background in P. lanceolata populations. The aim of this study was to investigate the cytology of early anther development in segregating hermaphrodite and male sterile flowers sharing the same CMSI cytoplasm, and to determine if the sterility phenotype correlates with any changes to the normal pattern of programmed cell death (PCD) that occurs during anther development. Cytology shows cellular abnormalities in all four anther wall layers (epidermis, endothecium, middle layer and tapetum), the persistence and enlargement of middle layer and tapetal cells, and the failure of microspore mother cells to complete meiosis in male sterile anthers. In these anthers, apoptotic-PCD occurs earlier than in fertile anthers and is detected in all four cell layers of the anther wall before the middle layer and tapetal cells become enlarged. PCD is separated spatially and temporally within the anther wall, occurring first in epidermal cells before extending radially to cells in the inner anther wall layers. This is the first evidence of a cell death signal being perceived and responded to by epidermal cells first before being conveyed inwards across the anther wall in male sterile plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CMS:

Cytoplasmic male sterility

H:

Hermaphrodite

MMC:

Microspore mother cells

MS:

Male sterile

PCD:

Programmed cell death

References

  • Balk J, Leaver CJ (2001) The PET1-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome c release. Plant Cell 13:1803–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Liu Y-G (2014) Male sterility and fertility restoration in crops. Annu Rev Plant Biol 65:579–606

    Article  CAS  PubMed  Google Scholar 

  • Cui X, Wise RP, Schnable PS (1996) The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science 272:1334–1336

    Article  CAS  PubMed  Google Scholar 

  • de Haan AA, Mateman AC, VanDijk PJ, Van Damme JMM (1997a) New CMS types in Plantago lanceolata and their relatedness. Theor Appl Genet 94:539–548

    Article  Google Scholar 

  • de Haan AA, Koelewijn HP, Hundscheid MPJ, Van Damme JMM (1997b) The dynamics of gynodioecy in Plantago lanceolata L. II. Mode of action and frequencies of restorer alleles. Genetics 147:1317–1328

    PubMed  Google Scholar 

  • De Storme N, Geelen D (2014) The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms. Plant Cell Environ 37:1–18

    Article  CAS  PubMed  Google Scholar 

  • Diggle PK, Di Stilio VS, Gschwend AR, Golenberg EM, Moore RC, Russell JRW, Sinclair JP (2011) Multiple developmental processes underlie sex differentiation in angiosperms. Trends Genet 27:368–376

    Article  CAS  PubMed  Google Scholar 

  • Dufaÿ M, Champelovier P, Käfer J, Henry JP, Mousset S, Marais GAB (2014) An angiosperm-wide analysis of the gynodioecy–dioecy pathway. Ann Bot 114:539–548

    Article  PubMed  PubMed Central  Google Scholar 

  • Egger RL, Walbot V (2016) A framework for evaluating developmental defects at the cellular level: an example from ten maize anther mutants using morphological and molecular data. Dev Biol 419:26–40

    Article  CAS  PubMed  Google Scholar 

  • Falasca G, D’Angeli S, Biasi R, Farrorini L, Matteucci M, Canini A, Altamura MM (2013) Tapetum and middle layer control male fertility in Actinidia deliciosa. Ann Bot 112:1045–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng X, Kaur AP, Mackenzie SA, Dweikat IM (2009) Substoichiometric shifting in the fertility reversion of cytoplasmic male sterile pearl millet. Theor Appl Genet 118:1361–1370

    Article  CAS  PubMed  Google Scholar 

  • Flores-Rentería L, Orozco-Arroyo G, Cruz-García F, García-Campusano F, Alfaro I, Vázquez-Santana S (2013) Programmed cell death promotes male sterility in the functional dioecious Opuntia stenopetala (Cactaceae). Ann Bot 112:789–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii S, Toriyama K (2009) Suppressed expression of RETROGRADE-REGULATED MALE STERILITY restores pollen fertility in cytoplasmic male sterile rice plants. Proc Natl Acad Sci USA 106:9513–9518

    Article  PubMed  PubMed Central  Google Scholar 

  • Gómez JF, Talle B, Wilson ZA (2015) Anther and pollen development: a conserved developmental pathway. J Integr Plant Biol 57:876–891

    Article  PubMed  PubMed Central  Google Scholar 

  • Hatsugai N, Kuroyanagi M, Nishimura M, Hara-Nishimura I (2006) A cellular suicide strategy of plants: vacuole-mediated cell death. Apoptosis 11:905–911

    Article  CAS  PubMed  Google Scholar 

  • Henderson LB (1926) Floral anatomy of several species of Plantago. Am J Bot 13:397–405

    Article  Google Scholar 

  • Hernández-Cruz R, Barrón-Pacheco F, Sánchez D, Arias S, Vázquez-Santana S (2018) Functional dioecy in Echinocereus: ontogenetic patterns, programmed cell death, and evolutionary significance. Int J Plant Sci 179:257–274

    Article  Google Scholar 

  • Horn R, Gupa KJ, Colombo N (2014) Mitochondrion role in molecular basis of cytoplasmic male sterility. Mitochondrion 19:198–205

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Huang W, Huang Q, Qin X, Yu C, Wang L, Li S, Zhu R, Zhu Y (2014) Mitochondria and cytoplasmic male sterility in plants. Mitochondrion 19:282–288

    Article  CAS  PubMed  Google Scholar 

  • Itabashi E, Iwata N, Fujii S, Kazama T, Toriyama K (2011) The fertility restorer gene, Rf2, for lead rice-type cytoplasmic male sterility of rice encodes a mitochondrial glycine-rich protein. Plant J 65:359–367

    Article  CAS  PubMed  Google Scholar 

  • Ji C, Li H, Chen L, Xie M, Wang F, Chen Y, Liu YG (2013) A novel rice bHLH transcription factor, DTD, acts coordinately with TDR in controlling tapetum function and pollen development. Mol Plant 6:1715–1718

    Article  CAS  PubMed  Google Scholar 

  • Jung KH, Han MJ, Lee YS, Kim YW, Hwang I, Kim MJ, Kim YK, Nahm BH, An G (2005) Rice Undeveloped Tapetum1 is a major regulator of early tapetum development. Plant Cell 17:2705–2722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawanabe T, Ariizumi T, Kawai-Yamada M, Uchimiya H, Toriyama K (2006) Abolition of the tapetum suicide program ruins microsporogenesis. Plant Cell Physiol 47:784–787

    Article  CAS  PubMed  Google Scholar 

  • Kim Y-J, Zhang D (2018) Molecular control of male fertility for crop hybrid breeding. Trends Plant Sci 23:53–65

    Article  CAS  PubMed  Google Scholar 

  • Koch I, Alves DM, Souto LS (2018) Anther wall and pollen development in two species of Rauvolfia L. (Apocynaceae). Braz J Bot 41:175–184

    Article  Google Scholar 

  • Ku S, Yoon H, Suh H, Chung Y (2003) Male-sterility of thermosensitive genic male-sterile rice is associated with premature programmed cell death of the tapetum. Planta 217:559–565

    Article  CAS  PubMed  Google Scholar 

  • Kurusu T, Koyano T, Hanamata S, Kubo T, Noguchi Y, Yagi C, Nagata N, Yamamoto T, Ohnishi T, Okazaki Y, Kitahata N, Ando D, Ishikawa M, Wada S, Miyao A, Hirochika H, Shimada H, Makino A, Saito K, Ishida H, Kinoshita T, Kurata N, Kuchitsu K (2014) OsATG7 is required for autophagy-dependent lipid metabolism in rice post-meiotic anther development. Autophagy 10:878–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landgren M, Zetterstrand M, Sundberg E, Glimelius K (1996) Alloplasmic male-sterile Brassica lines containing B. tournefortii mitochondria express an ORF 3′ of the atp6 gene and a 32 kDa protein. Plant Mol Biol 32:879–890

    Article  CAS  PubMed  Google Scholar 

  • Li SQ, Wan CX, Kong J, Zhang ZJ, Li YS, Zhu YG (2004) Programmed cell death during microgenesis in a Honglian CMS line of rice is correlated with oxidative stress in mitochondria. Funct Plant Biol 31:369–376

    Article  CAS  PubMed  Google Scholar 

  • Li N, Zhang D-S, Liu H-S, Yin C-S, Li X-X, Liang W-Q, Yuan Z, Xu B, Chu H-W, Wang J, Wen T-Q, Huang H, Luo D, Ma H, Zhang D-B (2006) The rice Tapetum Degeneration Retardation gene is required for tapetum degradation and anther development. Plant Cell 18:2999–3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Shi X, Li S, Hu G, Zhang L, Song X (2018) Tapetal-delayed programmed cell death (PCD) and oxidative stress-induced male sterility of Aegilops uniaristata cytoplasm in wheat. Int J Mol Sci 19:1708

    Article  CAS  PubMed Central  Google Scholar 

  • Luo D, Xu H, Liu Z, Guo J, Li H, Chen L, Fang C, Zhang Q, Bai M, Yao N, Wu H, Wu H, Ji C, Zheng H, Chen Y, Ye S, Li X, Zhao X, Li R, Liu Y-G (2013) A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat Genet 45:573–577

    Article  CAS  PubMed  Google Scholar 

  • Matsuhira H, Kagami H, Kurata M, Kitazaki K, Matsunaga M, Hamaguchi Y, Hagihara E, Ueda M, Harada M, Muramatsu A, Yui-Kurino R, Taguchi K, Tamagake H, Mikami T, Kubo T (2012) Unusual and typical features of a novel restorer-of-fertility gene of sugar beet (Beta vulgaris L.). Genetics 192:1347–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon HK, Hong SP (2015) Morphological traits of gynodioecious Persicaria amphibia (Polygonaceae). Phytotaxa 219:133–143

    Article  Google Scholar 

  • Murayama K, Yahara T, Terachi T (2004) Variation of female frequency and cytoplasmic male-sterility gene frequency among natural gynodioecious populations of wild radish (Raphanus sativus). Mol Ecol 13:2459–2464

    Article  CAS  PubMed  Google Scholar 

  • Naghloo S, Classen-Bockhoff R (2016) Gradual inhibition of staminate structures results in various degrees of male sterility in Knautia arvensis. Int J Plant Sci 177:608–617

    Article  Google Scholar 

  • Nakaune S, Yamada K, Kondo M, Kato T, Tabata S, Nishimura M, Hara-Nishimura I (2005) A vacuolar processing enzyme, δVPE, is involved in seed coat formation at the early stage of seed development. Plant Cell 17:876–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olff H, Kuiper D, Van Damme JMM, Kuiper PJC (1989) Gynodioecy in Plantago lanceolata. VI. Functions of cytokinins in growth, development, and reproduction of two sex types. Can J Bot 67:2765–2769

    Article  CAS  Google Scholar 

  • Onodera Y, Arakawa T, Yui-Kurino R, Yamamoto MP, Kitazaki K, Ebe S, Matsunaga M, Taguchi K, Kuroda Y, Yamashita S, Sakai T, Kinoshita T, Mikami T, Kubo T (2015) Two male sterility-inducing cytoplasms of beet (Beta vulgaris) are genetically distinct but have closely related mitochondrial genomes: implication of a sub-stoichiometric mitochondrial DNA molecule in their evolution. Euphytica 206:365–379

    Article  CAS  Google Scholar 

  • Oshino T, Abiko M, Saito R, Ichiishi E, Endo M, Kawagishi-Kobayashi M (2007) Premature progression of anther early developmental programs accompanied by comprehensive alterations in transcription during high-temperature injury in barley plants. Mol Genet Genomics 278:31–42

    Article  CAS  PubMed  Google Scholar 

  • Papini A, Mosti S, Brighigna L (1999) Programmed-cell-death events during tapetum development of angiosperms. Protoplasma 207:213–221

    Article  Google Scholar 

  • Parish RW, Li SF (2010) Death of a tapetum: a programme of developmental altruism. Plant Sci 178:73–89

    Article  CAS  Google Scholar 

  • Petrov V, Hille J, Mueller-Roeber B, Gechev TS (2015) ROS-mediated abiotic stress-induced programmed cell death in plants. Front Plant Sci 6:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Renner SS (2014) The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Am J Bot 101:1588–1596

    Article  PubMed  Google Scholar 

  • Sanders PM, Bui AQ, Weterings K, McIntire KN, Hsu YC, Lee PY, Truong MT, Beals TP, Goldberg RB (1999) Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod 11:297–322

    Article  CAS  Google Scholar 

  • Sarria R, Lyznik A, Vallejos CE, Mackenzie SA (1998) A cytoplasmic male sterility-associated mitochondrial peptide in common bean is post-translationally regulated. Plant Cell 10:1217–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16:S46–S60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaya F, Gaiduk S, Keren I, Shevtsov S, Zemah H (2012) Expression of mitochondrial gene fragments within the tapetum induce male sterility by limiting the biogenesis of the respiratory machinery. J Integr Plant Biol 54:115–130

    Article  CAS  PubMed  Google Scholar 

  • Sloan DB, Müller K, McCauley DE, Taylor DR, Štorchová H (2012) Intraspecific variation in mitochondrial genome sequence, structure, and gene content in Silene vulgaris, an angiosperm with pervasive cytoplasmic male sterility. New Phytol 196:1228–1239

    Article  CAS  PubMed  Google Scholar 

  • Städler T, Delph LF (2002) Ancient mitochondrial haplotypes and evidence for intragenic recombination in a gynodioecious plant. Proc Natl Acad Sci USA 99:11730–11735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stone JD, Koloušková P, Sloan DB, Štorchová H (2017) Non-coding RNA may be associated with cytoplasmic male sterility in Silene vulgaris. J Exp Bot 68:1599–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Štorchová H, Müller K, Lau S, Olson MS (2012) Mosaic origins of a complex chimeric mitochondrial gene in Silene vulgaris. PLoS One 7:e30401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strittmatter LI, Negrón-Ortiz V, Hickey JR (2006) Comparative microsporangium development in male-fertile and male-sterile flowers of Consolea (Cactaceae): when and how does pollen abortion occur. Grana 45:81–100

    Article  Google Scholar 

  • Sun M, Ganders FR (1987) Microsporogenesis in male-sterile and hermaphroditic plants of nine gynodioecious taxa of Hawaiian Bidens (Asteraceae). Am J Bot 74:209–217

    Article  Google Scholar 

  • Touzet P (2012) Mitochondrial genome evolution and gynodioecy. Adv Bot Res 63:71–98

    Article  Google Scholar 

  • Van Damme JMM, Van Delden W (1982) Gynodioecy in Plantago lanceolata L. I. Polymorphism for plasmon type. Heredity 49:303–318

    Article  Google Scholar 

  • Varnier A-L, Mazeyrat-Gourbeyre F, Sangwan RS, Clément C (2005) Programmed cell death progressively models the development of anther sporophytic tissues from the tapetum and is triggered in pollen grains during maturation. J Struct Biol 152:118–128

    Article  CAS  PubMed  Google Scholar 

  • Walbot V, Egger RL (2016) Pre-meiotic anther development: cell fate specification and differentiation. Annu Rev Plant Biol 67:365–395

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Hoekstra S, van Bergen S, Lamers GEM, Oppedijk BJ, van der Heijden MW, de Priester W, Schilperoort RA (1999) Apoptosis in developing anthers and the role of ABA in this process during androgenesis in Hordeum vulgare L. Plant Mol Biol 39:489–501

    Article  CAS  PubMed  Google Scholar 

  • Xie HT, Wan ZY, Li S, Zhang Y (2014) Spatiotemporal production of reactive oxygen species by NADPH oxidase is critical for tapetal programmed cell death and pollen development in Arabidopsis. Plant Cell 26:2007–2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto MP, Shinada H, Onodera Y, Komaki C, Mikami T, Kubo T (2008) A male sterility-associated mitochondrial protein in wild beets causes pollen disruption in transgenic plants. Plant J 54:1027–1036

    Article  CAS  PubMed  Google Scholar 

  • Yu S-X, Feng Q-N, Xie H-T, Li S, Shang Y (2017) Reactive oxygen species mediate tapetal programmed cell death in tobacco and tomato. BMC Plant Biol 17:76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Sun Y, Timofejeva L, Chen C, Grossniklaus Y, Ma H (2006) Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development 133:3085–3095

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Lou Y, Xu X, Yang Z-N (2011) A genetic pathway for tapetum development and function in Arabidopsis. J Integr Plant Biol 53:892–900

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Ica Dix for help with confocal microscopy and photography, and Dr. Julie Kennedy for help with tissue embedding and ultramicrotome sectioning. This work was funded by an allocation received from the Department of Biology, Maynooth University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline M. Nugent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nugent, J.M., Byrne, T., McCormack, G. et al. Progressive programmed cell death inwards across the anther wall in male sterile flowers of the gynodioecious plant Plantago lanceolata. Planta 249, 913–923 (2019). https://doi.org/10.1007/s00425-018-3055-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-018-3055-y

Keywords

Navigation