Skip to main content
Log in

Functional analysis of oxidative burst in sugarcane smut-resistant and -susceptible genotypes

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main Conclusion

Smut pathogen induced an early modulation of the production and scavenging of reactive oxygen species during defence responses in resistant sugarcane that coincided with the developmental stages of fungal growth.

Sporisorium scitamineum is the causal agent of sugarcane smut disease. In this study, we characterized sugarcane reactive oxygen species (ROS) metabolism in response to the pathogen in smut-resistant and -susceptible genotypes. Sporisorium scitamineum teliospore germination and appressorium formation coincided with H2O2 accumulation in resistant plants. The superoxide dismutase (SOD) activity was not responsive in any of the genotypes; however, a higher number of isoenzymes were detected in resistant plants. In addition, related to resistance were lipid peroxidation, a decrease in catalase (CAT), and an increase in glutathione S-transferase (GST) activities and an earlier transcript accumulation of ROS marker genes (CAT3, CATA, CATB, GST31, GSTt3, and peroxidase 5-like). Furthermore, based on proteomic data, we suggested that the source of the increased hydrogen peroxide (H2O2) may be due to a protein of the class III peroxidase, which was inhibited in the susceptible genotype. H2O2 is sensed and probably transduced through overlapping systems related to ascorbate–glutathione and thioredoxin to influence signalling pathways, as revealed by the presence of thioredoxin h-type, ascorbate peroxidase, and guanine nucleotide-binding proteins in the infected resistant plants. Altogether, our data depicted the balance of the oxidative burst and antioxidant enzyme activity in the outcome of this interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CAT:

Catalase

GST:

Glutathione S-transferase

MDA:

Malondialdehyde

ROS:

Reactive oxygen species

SA:

Salicylic acid

SOD:

Superoxide dismutase

hpi:

Hours post-inoculation

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Apoga D, Barnard J, Craighead HG, Hoch HC (2004) Quantification of substratum contact required for initiation of Colletotrichum graminicola appressoria. Fungal Genet Biol 41:1–12

    Article  PubMed  Google Scholar 

  • Azevedo RA, Alas RM, Smith RJ, Lea PJ (1998) Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiol Plant 104:280–292

    Article  CAS  Google Scholar 

  • Barna B, Fodor J, Harrach BD et al (2012) The Janus face of reactive oxygen species in resistance and susceptibility of plants to necrotrophic and biotrophic pathogens. Plant Physiol Biochem 59:37–43

    Article  CAS  PubMed  Google Scholar 

  • Barnabas L, Ashwin NMR, Kaverinathan K et al (2016) Proteomic analysis of a compatible interaction between sugarcane and Sporisorium scitamineum. Proteomics 16:1111–1122

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Beffa R, Szell M, Meuwly P et al (1995) Cholera toxin elevates pathogen resistance and induces pathogenesis-related gene expression in tobacco. EMBO J 14:5753–5761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Booth J, Boyland E, Sims P (1961) An enzyme from rat liver catalysing conjugations with glutathione. Biochem J 79:516–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Glazebrook J, Clarke JD et al (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63

    Article  CAS  PubMed  Google Scholar 

  • Carvalho G, Quecine MC, Longatto DP et al (2016) Sporisorium scitamineum colonisation of sugarcane genotypes susceptible and resistant to smut revealed by GFP-tagged strains. Ann Appl Biol 169:329–341. doi:10.1111/aab.12304

    Article  CAS  Google Scholar 

  • Chen J-W, Kuang J-F, Peng G et al (2012) Molecular cloning and expression analysis of a NPR1 gene from sugarcane. Pak J Bot 44:193–200

    CAS  Google Scholar 

  • da Gloria BA, Albernas MC, Amorim L (1995) Structural characteristics of buds of sugarcane cultivars with different levels for resistance in smut. J Plant Dis Prot 102:502–508

    Google Scholar 

  • Dalvi SG, Vasekar VC, Yadav A et al (2012) Screening of promising sugarcane somaclones for agronomic traits, and smut resistance using PCR amplification of inter transcribed region (ITS) of Sporisorium scitaminae. Sugar Tech 14:68–75

    Article  Google Scholar 

  • de Armas R, Santiago R, Legaz M-E, Vicente C (2007) Levels of phenolic compounds and enzyme activity can be used to screen for resistance of sugarcane to smut (Ustilago scitaminea). Australas Plant Pathol 36:32–38

    Article  Google Scholar 

  • de Freitas MB, Stadnik MJ (2012) Race-specific and ulvan-induced defense responses in bean (Phaseolus vulgaris) against Colletotrichum lindemuthianum. Physiol Mol Plant Pathol 78:8–13

    Article  CAS  Google Scholar 

  • Dean JD, Goodwin PH, Hsiang T (2005) Induction of glutathione S-transferase genes of Nicotiana benthamiana following infection by Colletotrichum destructivum and C. orbiculare and involvement of one in resistance. J Exp Bot 56:1525–1533

    Article  CAS  PubMed  Google Scholar 

  • Debona D, Rodrigues FÁ, Rios JA, Nascimento KJT (2012) Biochemical changes in the leaves of wheat plants infected by Pyricularia oryzae. Phytopathology 102(12):1121–1129

    Article  CAS  PubMed  Google Scholar 

  • del Río LA (2015) ROS and RNS in plant physiology: an overview. J Exp Bot 66:2827–2837

    Article  PubMed  Google Scholar 

  • del Río L, López-Huertas E (2016) ROS generation in peroxisomes and its role in cell signaling. Plant Cell Physiol 57(7):1364–1376

    PubMed  Google Scholar 

  • Doehlemann G, Hemetsberger C (2013) Apoplastic immunity and its suppression by filamentous plant pathogens. New Phytol 198:1001–1016

    Article  CAS  PubMed  Google Scholar 

  • Durner J, Klessig DF (1996) Salicylic acid is a modulator of tobacco and mammalian catalases. J Biol Chem 271:28492–28501

    Article  CAS  PubMed  Google Scholar 

  • El-Maarouf-Bouteau H, Bailly C (2008) Oxidative signaling in seed germination and dormancy. Plant Signal Behav 3(3):175–182

    Article  PubMed  PubMed Central  Google Scholar 

  • Fontaniella B, Márquez A, Rodríguez CW et al (2002) A role for sugarcane glycoproteins in the resistance of sugarcane to Ustilago scitaminea. Plant Physiol Biochem 40:881–889

    Article  CAS  Google Scholar 

  • Fornazier RF, Ferreira RR, Pereira GJG et al (2002) Cadmium stress in sugar cane callus cultures: effect on antioxidant enzymes. Plant Cell Tiss Organ 71:125–131

    Article  CAS  Google Scholar 

  • Fortunato AA, Debona D, Bernardeli AMA, Rodrigues FÁ (2015) Changes in the antioxidant system in soybean leaves infected by Corynespora cassiicola. Phytopathology 105(8):1050–1058

    Article  CAS  PubMed  Google Scholar 

  • Ghelfi A, Gaziola SA, Cia MC et al (2011) Cloning, expression, molecular modelling and docking analysis of glutathione transferase from Saccharum officinarum. Ann Appl Biol 159:267–280

    Article  CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  Google Scholar 

  • Gratão PL, Monteiro CC, Carvalho RF et al (2012) Biochemical dissection of diageotropica and Never ripe tomato mutants to Cd-stressful conditions. Plant Physiol Biochem 56:79–96

    Article  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hemetsberger C, Herrberger C, Zechmann B et al (2012) The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. PLoS Pathogol 8:e1002684. doi:10.1371/journal.ppat.1002684

    Article  CAS  Google Scholar 

  • Hemetsberger C, Mueller AN, Matei A et al (2015) The fungal core effector Pep1 is conserved across smuts of dicots and monocots. New Phytol 206:1116–1126

    Article  CAS  PubMed  Google Scholar 

  • Hückelhoven R, Kogel K-H (2003) Reactive oxygen intermediates in plant-microbe interactions: who is who in powdery mildew resistance? Planta 216:891–902

    PubMed  Google Scholar 

  • Hückelhoven R, Fodor J, Trujillo M, Kogel K-H (2000) Barley Mla and Rar mutants compromised in the hypersensitive cell death response against Blumeria graminis f.sp. hordei are modified in their ability to accumulate reactive oxygen intermediates at sites of fungal invasion. Planta 212:16–24

    Article  PubMed  Google Scholar 

  • Hurkman WJ, Tanaka CK (1986) Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol 81:802–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James GL (1973) Smut spore germination on sugarcane internode surfaces. Proceedings of The South African Sugar Technologists’ Association, pp 179–180

  • Koeck M, Hardham AR, Dodds PN (2011) The role of effectors of biotrophic and hemibiotrophic fungi in infection. Cell Microbiol 13:1849–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  CAS  PubMed  Google Scholar 

  • LaO M, Arencibia AD, Carmona ER et al (2008) Differential expression analysis by cDNA-AFLP of Saccharum spp. after inoculation with the host pathogen Sporisorium scitamineum. Plant Cell Rep 27:1103–1111

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Ding P, Sun T et al (2013) Heterotrimeric G proteins serve as a converging point in plant defense signaling activated by multiple receptor-like kinases. Plant Physiol 161:2146–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millanes A-M, Vicente C, Legaz M-E (2008) Sugarcane glycoproteins bind to surface, specific ligands and modify cytoskeleton arrangement of Ustilago scitaminea teliospores. J Plant Interact 3:95–110

    Article  CAS  Google Scholar 

  • Mittler R, Herr EH, Orvar BL et al (1999) Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyperresponsive to pathogen infection. Proc Natl Acad Sci USA 96:14165–14170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molina L, Kahmann R (2007) An Ustilago maydis gene involved in H2O2 detoxification is required for virulence. Plant Cell 19:2293–2309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658

    Article  CAS  PubMed  Google Scholar 

  • Papini-Terzi FS, Rocha FR, Vêncio RZN et al (2005) Transcription profiling of signal transduction-related genes in sugarcane tissues. DNA Res 12:27–38

    Article  CAS  PubMed  Google Scholar 

  • Peters LP, Carvalho G, Martins PF et al (2014) Differential responses of the antioxidant system of ametryn and clomazone tolerant bacteria. PLoS One 9:e112271. doi:10.1371/journal.pone.0112271

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: bestKeeper—excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  CAS  PubMed  Google Scholar 

  • Piepenbring M, Stoll M, Oberwinkler F (2002) The generic position of Ustilago maydis, Ustilago scitaminea, and Ustilago esculenta (Ustilaginales). Mycol Prog 1:71–80

    Article  Google Scholar 

  • Que Y, Su Y, Guo J, Wu Q, Xu L (2014) A global view of transcriptome dynamics during Sporisorium scitamineum challenge in sugarcane by RNA-seq. PLoS One 9(8):e106476. doi:10.1371/journal.pone.0106476

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramakers C, Ruijter JM, Deprez RHL, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  CAS  PubMed  Google Scholar 

  • Rocha FR, Papini-Terzi FS, Nishiyama MY et al (2007) Signal transduction-related responses to phytohormones and environmental challenges in sugarcane. BMC Genom 8:71

    Article  Google Scholar 

  • Sánchez-Elordi E, Baluška F, Echevarría C, Vicentea C, Legaz ME (2016) Defence sugarcane glycoproteins desorganize microtubules and prevent nuclear polarization and germination of Sporisorium scitamineum teliospores. J Plant Physiol. doi:10.1016/j.jplph.2016.05.022

    PubMed  Google Scholar 

  • Santiago R, Alarcón B, de Armas R et al (2012) Changes in cinnamyl alcohol dehydrogenase activities from sugarcane cultivars inoculated with Sporisorium scitamineum sporidia. Physiol Plant 145:245–259

    Article  CAS  PubMed  Google Scholar 

  • Schaker PDC, Palhares AC, Taniguti LM, Peters LP, Creste S, Aitken KS et al (2016) RNAseq transcriptional profiling following whip development in sugarcane smut disease. PLoS One 11(9):e0162237. doi:10.1371/journal.pone.0162237

    Article  PubMed  PubMed Central  Google Scholar 

  • Sevilla F, Camejo D, Ortiz-Espín A et al (2015) The thioredoxin/peroxiredoxin/sulfiredoxin system: current overview on its redox function in plants and regulation by reactive oxygen and nitrogen species. J Exp Bot 66:2945–2955

    Article  CAS  PubMed  Google Scholar 

  • Shetty NP, Mehrabi R, Lütken H et al (2007) Role of hydrogen peroxide during the interaction between the hemibiotrophic fungal pathogen Septoria tritici and wheat. New Phytol 174:637–647

    Article  CAS  PubMed  Google Scholar 

  • Song X, Xing Huang B, Dandan Tian B et al (2013) Proteomic analysis of sugarcane seedling in response to Ustilago scitaminea Infection. Life Sci J 10:3026–3035

    Google Scholar 

  • Su Y, Guo J, Ling H et al (2014) Isolation of a novel peroxisomal catalase gene from sugarcane, which is responsive to biotic and abiotic stresses. PLoS One 9:e84426. doi:10.1371/journal.pone.0084426

    Article  PubMed  PubMed Central  Google Scholar 

  • Su Y, Wang Z, Xu L, Peng Q, Liu F, Li Z, Que Y (2016) Early selection for smut resistance in sugarcane using pathogen proliferation and changes in physiological and biochemical indices. Front Plant Sci 7:1133. doi:10.3389/fpls.2016.01133

    PubMed  PubMed Central  Google Scholar 

  • Sundar AR, Barnabas EL, Malathi P, Viswanathan R (2012) A mini-review on smut disease of sugarcane caused by Sporisorium scitamineum. In: Mworia JK (ed) Botany. InTech Rijeka, Croatia, pp 107–128

    Google Scholar 

  • Tada Y, Spoel SH, Pajerowska-Mukhtar K et al (2008) Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956

    Article  CAS  PubMed  Google Scholar 

  • Taniguti LM, Schaker PDC, Benevenuto J et al (2015) Complete genome sequence of Sporisorium scitamineum and biotrophic interaction transcriptome with sugarcane. PLoS One 10:e0129318. doi:10.1371/journal.pone.0129318

    Article  PubMed  PubMed Central  Google Scholar 

  • Torres MA (2010) ROS in biotic interactions. Physiol Plant 138:414–429

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Morales J, Sánchez-Rodríguez C et al (2013) Functional interplay between Arabidopsis NADPH oxidases and heterotrimeric G protein. Mol Plant Microbe Interact 26(6):686–694

    Article  CAS  PubMed  Google Scholar 

  • Tuite J (1969) Plant pathological methods: fungi and bacteria, 1st edn. Burgess Publishing Company, Minneapolis

    Google Scholar 

Download references

Acknowledgments

The authors thank the Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) for performing the mass spectrometry analysis. The authors also thank the technical support of Elaine Vidotto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia B. Monteiro-Vitorello.

Ethics declarations

Financial support

The authors acknowledge the support of the Brazilian institutions FAPESP and CNPq (CNPq 443827/2014-1; FAPESP 2015/07112-4 [CBM-V], FAPESP 2009/54676-0 [RAA] and fellowships to LPP (2013/15014-7), GC (CNPq 159973/2012-0), CBMV (CNPq 303965/2015-0), RAA (CNPq 302540/2011-3), and MBV (CNPq 142736/2011-2).

Additional information

G. Carvalho and M. B. Vilhena contributed equally to this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2016_2642_MOESM1_ESM.tif

Fig. S1 Phenotypic characteristics of sugarcane buds. a Genotypes of sugarcane buds collected from 10-month-old plants: IAC66-6, smut-susceptible genotype (1), and SP80-3280, smut- resistant genotype (2). b Time-course experiment and tissues in which different analyses were performed for each assay. Bar = 0.5 cm (TIFF 55713 kb)

Supplementary material 2 (DOCX 13 kb)

Supplementary material 3 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peters, L.P., Carvalho, G., Vilhena, M.B. et al. Functional analysis of oxidative burst in sugarcane smut-resistant and -susceptible genotypes. Planta 245, 749–764 (2017). https://doi.org/10.1007/s00425-016-2642-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2642-z

Keywords

Navigation