Skip to main content

Advertisement

Log in

Role of CINC-1 and CXCR2 receptors on LPS-induced fever in rats

  • Integrative Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The classic model of fever induction is based on the administration of lipopolysaccharide (LPS) from Gram-negative bacteria in experimental animals. LPS-induced fever results in the synthesis/release of many mediators that assemble an LPS-fever cascade. We have previously demonstrated that cytokine-induced neutrophil chemoattractant (CINC)-1, a Glu-Leu-Arg (ELR) + chemokine, centrally administered to rats, induces fever and increases prostaglandin E2 in the cerebrospinal fluid. We now attempt to investigate the involvement of CINC-1 and its functional receptor CXCR2 on the fever induced by exogenous and endogenous pyrogens in rats. We also investigated the effect of reparixin, an allosteric inhibitor of CXCR1/CXCR2 receptors, on fever induced by either systemic administration of LPS or intracerebroventricular injection of CINC-1, as well as TNF-α, IL-1β, IL-6, or ET-1, known mediators of febrile response. Our results show increased CINC-1 mRNA expression in the liver, hypothalamus, CSF, and plasma following LPS injection. Moreover, reparixin administered right before CINC-1 or LPS abolished the fever induced by CINC-1 and significantly reduced the response induced by LPS. In spite of these results, reparixin does not modify the fever induced by IL-1β, TNF-α, and IL-6, but significantly reduces ET-1-induced fever. Therefore, it is plausible to suggest that CINC-1 might contribute to LPS-induced fever in rats by activating CXCR2 receptor on the CNS. Moreover, it can be hypothesized that CINC-1 is placed upstream TNF-α, IL-1β, and IL-6 among the prostaglandin-dependent fever-mediator cascade and amidst the prostaglandin-independent synthesis pathway of fever.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anthony D, Dempster R, Fearn S, Clements J, Wells G, Perry VH, Walker K (1998) CXC chemokines generate age-related increases in neutrophil-mediated brain inflammation and blood-brain barrier breakdown. Curr Biol 8(16):923–926

    Article  CAS  Google Scholar 

  2. Barichello T, Lemos JC, Generoso JS, Cipriano AL, Milioli GL, Marcelino DM, Vuolo F, Petronilho F, Dal-Pizzol F, Vilela MC, Teixeira AL (2011) Oxidative stress, cytokine/chemokine and disruption of blood-brain barrier in neonate rats after meningitis by Streptococcus agalactiae. Neurochem Res 36(10):1922–1930

    Article  CAS  PubMed  Google Scholar 

  3. Basu S, Binder RJ, Ramalingam T, Srivastava PK (2001) CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14:303–313

    Article  CAS  PubMed  Google Scholar 

  4. Bertini R, Allegretti M, Bizzarri C, Moriconi A, Locati M, Zampella G, Cervellera MN, di Cioccio V, Cesta MC, Galliera E, Martinez FO, di Bitondo R, Troiani G, Sabbatini V, D’Anniballe G, Anacardio R, Cutrin JC, Cavalieri B, Mainiero F, Strippoli R, Villa P, di Girolamo M, Martin F, Gentile M, Santoni A, Corda D, Poli G, Mantovani A, Ghezzi P, Colotta F (2004) Noncompetitive allosteric inhibitors of the inflammatory chemokine receptors CXCR1 and CXCR2: prevention of reperfusion injury. Proc Natl Acad Sci U S A 101:11791–11796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boulant JA (2006) Counterpoint: heat-induced membrane depolarization of hypothalamic neurons: an unlikely mechanism of central thermosensitivity. Am J Phys Regul Integr Comp Phys 290:R1481–R1484

    CAS  Google Scholar 

  6. Brandolini L, Benedetti E, Ruffini PA, Russo R, Cristiano L, Antonosante A, d’Angelo M, Castelli V, Giordano A, Allegretti M, Cimini A (2017) CXCR1/2 pathways in paclitaxel-induced neuropathic pain. Oncotarget 8:23188–23201

    PubMed  Google Scholar 

  7. Budick-Harmelin N, Dudas J, Demuth J, Madar Z, Ramadori G, Tirosh O (2010) Triglycerides potentiate the inflammatory response in rat Kupffer cells. Antioxid Redox Signal 10(12):2009–2022

    Article  CAS  Google Scholar 

  8. Calkins CM, Bensard DD, Shames BD, Pulido EJ, Abraham E, Fernandez N, Meng X, Dinarello CA, McIntyre RC Jr (2002) IL-1 regulates in vivo C-X-C chemokine induction and neutrophil sequestration following endotoxemia. J Endotoxin Res 8(1):59–67

    CAS  PubMed  Google Scholar 

  9. Campbell SJ, Hughes PM, Iredale JP, Wilcockson DC, Waters S, Docagne F, Perry VH, Anthony DC (2003) CINC-1 is identified as an acute-phase protein induced by focal brain injury causing leukocyte mobilization and liver injury. FASEB J 17(9):1168–1170

    Article  CAS  PubMed  Google Scholar 

  10. Chapman RW, Minnicozzi M, Celly CS, Phillips JE, Kung TT, Hipkin RW, Fan X, Rindgen D, Deno G, Bond R, Gonsiorek W, Billah MM, Fine JS, Hey JA (2007) A novel, orally active CXCR1/2 receptor antagonist, Sch527123, inhibits neutrophil recruitment, mucus production, and goblet cell hyperplasia in animal models of pulmonary inflammation. J Pharmacol Exp Ther 322(2):486–493

    Article  CAS  PubMed  Google Scholar 

  11. Consiglio AR, Lucion AB (2000) Technique for collecting cerebrospinal fluid in the cisterna magna of non-anesthetized rats. Brain Res Protocol 5:109–114

    Article  CAS  Google Scholar 

  12. Davatelis G, Wolpe SD, Sherry B, Dayer JM, Chicheportiche R, Cerami A (1989) Macrophage inflammatory protein-1: a prostaglandin-independent endogenous pyrogen. Science 243:1066–1068

    Article  CAS  PubMed  Google Scholar 

  13. Dinarello CA (1984) Interleukin-1 and the pathogenesis of the acute-phase response. N Engl J Med 311(22):1413–1418

    Article  CAS  PubMed  Google Scholar 

  14. Dinarello CA, Cannon JG, Wolff SM, Bernheim HA, Beutler B, Cerami A, Figari IS, Palladino MA Jr, O’Connor JV (1986) Tumor necrosis factor (cachectin) is an endogenous pyrogen and induces production of interleukin 1. J Exp Med 163(6):1433–1450

    Article  CAS  PubMed  Google Scholar 

  15. Dunstan CN, Salafranca MN, Adhikari S, Xia Y, Feng L, Harrison JK (1996) Identification of two rat genes orthologous to the human interleukin-8 receptors. J Biol Chem 271:32770–32776

    Article  CAS  PubMed  Google Scholar 

  16. Fabricio AS, Tringali G, Pozzoli G, Melo MC, Vercesi JA, Souza GE, Navarra P (2006) Interleukin-1 mediates endothelin-1-induced fever and prostaglandin production in the preoptic area of rats. Am J Phys Regul Integr Comp Phys 290(6):R1515–R1523

    CAS  Google Scholar 

  17. Fabricio AS, Veiga FH, Cristofoletti R, Navarra P, Souza GE (2005) The effects of selective and nonselective cyclooxygenase inhibitors on endothelin-1-induced fever in rats. Am J Phys Regul Integr Comp Phys 288(3):R671–R677

    CAS  Google Scholar 

  18. Fabricio AS, Silva CA, Rae GA, D’Orléans-Juste P, Souza GE (1998) Essential role for endothelin ET(B) receptors in fever induced by LPS (E. coli) in rats. Br J Pharmacol 125(3):542–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Girard JP, Moussion C, Forster R (2012) HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat Rev Immunol 12:762–773

    Article  CAS  PubMed  Google Scholar 

  20. Hanada R, Leibbrandt A, Hanada T, Kitaoka S, Furuyashiki T, Fujihara H, Trichereau J, Paolino M, Qadri F, Plehm R, Klaere S, Komnenovic V, Mimata H, Yoshimatsu H, Takahashi N, von Haeseler A, Bader M, Kilic SS, Ueta Y, Pifl C, Narumiya S, Penninger JM (2009) Central control of fever and female body temperature by RANKL/RANK. Nature 462:505–509

    Article  CAS  PubMed  Google Scholar 

  21. Harden LM, Kent S, Pittman QJ, Roth J (2015) Fever and sickness behavior: friend or foe? Brain Behav Immun 50:322–333. https://doi.org/10.1016/j.bbi.2015.07.012

    Article  CAS  PubMed  Google Scholar 

  22. Harré EM, Roth J, Pehl U, Kueth M, Gerstberger R, Hübschle T (2002) Selected contribution: role of IL-6 in LPS-induced nuclear STAT3 translocation in sensory circumventricular organs during fever in rats. J Appl Physiol 92:2657–2666

    Article  PubMed  Google Scholar 

  23. Helle M, Brakenhoff JPJ, De Groot ER, Aarden LA (1988) Interleukin 6 is involved in interleukin 1-induced activities. Eur J Immunol 18:957–959

    Article  CAS  PubMed  Google Scholar 

  24. Kluger MJ (1991) Fever: role of pyrogens and cryogens. Physiol Rev 71(1):93–127

    Article  CAS  PubMed  Google Scholar 

  25. Khanam A, Trehanpati N, Riese P, Rastogi A, Guzman CA, Sarin SK (2017) Blockade of neutrophil’s chemokine receptors CXCR1/2 abrogate liver damage in acute-on-chronic liver failure. Front Immunol 8:464. https://doi.org/10.3389/fimmu.2017.00464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Loram LC, Themistocleous AC, Fick LG, Kamerman PR (2007) The time course of inflammatory cytokine secretion in a rat model of postoperative pain does not coincide with the onset of mechanical hyperalgesia. Can J Physiol Pharmacol 85(6):613–620

    Article  CAS  PubMed  Google Scholar 

  27. Machado RR, Soares DM, Proudfoot AE, Souza GEP (2007) CCR1 and CCR5 chemokine receptors are involved in fever induced by LPS (E. coli) and RANTES in rats. Brain Res 1161:21–31

    Article  CAS  PubMed  Google Scholar 

  28. Michalak S, Wender M, Michalowska-Wender G, Kozubski W (2010) Blood-brain barrier breakdown and cerebellar degeneration in the course of experimental neoplastic disease. Are circulating cytokine-induced neutrophil chemoattractant-1 (CINC-1) and -2alpha(CINC-2alpha) the involved mediators? Folia Neuropathol 48(2):93–103

    CAS  PubMed  Google Scholar 

  29. Moriconi A, Cesta MC, Cervellera MN, Aramini A, Coniglio S, Colagioia S, Beccari AR, Bizzarri C, Cavicchia MR, Locati M et al (2007) Design of noncompetitive interleukin-8 inhibitors acting on CXCR1 and CXCR2. J Med Chem 50:3984–4002

    Article  CAS  PubMed  Google Scholar 

  30. Murphy PM, Baggiolini M, Charo IF, Hebert CA, Horuk R, Matsushima K et al (2000) International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 52:145–176

    CAS  PubMed  Google Scholar 

  31. Nakagawa H, Ikesue A, Hatakeyama S, Kato H, Gotoda T, Komorita N, Watanabe K, Miyai H (1993) Production of an interleukin-8-like chemokine by cytokine-stimulated rat NRK-49F fibroblasts and its suppression by anti-inflammatory steroids. Biochem Pharmacol 45:1425–1430

    Article  CAS  PubMed  Google Scholar 

  32. Nakamura K (2011) Central circuitries for body temperature regulation and fever. Am J Phys Regul Integr Comp Phys 301(5):R1207–R1228

    CAS  Google Scholar 

  33. Nguyen D, Stangel M (2001) Expression of the chemokine receptors CXCR1 and CXCR2 in rat oligodendroglial cells. Brain Res Dev Brain Res 128(1):77–81

    Article  CAS  Google Scholar 

  34. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals (2011) Guide for the care and use of laboratory animals, 8th edn. National Academies Press, Washington, DC

    Google Scholar 

  35. Osborn O, Sanchez-Alavez M, Dubins JS, Gonzalez AS, Morrison B, Hadcock JR, Bartfai T (2011) Ccl22/MDC, is a prostaglandin dependent pyrogen, acting in the anterior hypothalamus to induce hyperthermia via activation of brown adipose tissue. Cytokine 53(3):311–319

    Article  CAS  PubMed  Google Scholar 

  36. Ostberg JR, Repasky EA (2007) Emerging evidence indicates that physiologically relevant thermal stress regulates dendritic cell function. Cytokine 39(1):84–96

    Article  CAS  Google Scholar 

  37. Ott D, Murgott J, Rafalzik S, Wuchert F, Schmalenbeck B, Roth J, Gerstberger R (2010) Neurons and glial cells of the rat organum vasculosum laminae terminalis directly respond to lipopolysaccharide and pyrogenic cytokines. Brain Res 1363:93–106

    Article  CAS  PubMed  Google Scholar 

  38. Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates. Academic Press, New York

    Google Scholar 

  39. Planagumà A, Domènech T, Pont M, Calama E, García-González V, López R, Aulí M, López M, Fonquerna S, Ramos I, de Alba J, Nueda A, Prats N, Segarra V, Miralpeix M, Lehner MD (2015) Combined anti CXC receptors 1 and 2 therapy is a promising anti-inflammatory treatment for respiratory diseases by reducing neutrophil migration and activation. Pulm Pharmacol Ther 34:37–45

    Article  CAS  PubMed  Google Scholar 

  40. Podolin PL, Bolognese BJ, Foley JJ, Schmidt DB, Buckley PT, Widdowson KL, Jin Q, White JR, Lee JM, Goodman RB, Hagen TR, Kajikawa O, Marshall LA, Hay DW, Sarau HM (2002) A potent and selective nonpeptide antagonist of CXCR2 inhibits acute and chronic models of arthritis in the rabbit. J Immunol 169(11):6435–6444

    Article  CAS  PubMed  Google Scholar 

  41. Romanovsky AA, Ivanov AI, Shimansky YP (2002) Selected contribution: ambient temperature for experiments in rats: a new method for determining the zone of thermal neutrality. J Appl Physiol 92(6):2667–2679

    Article  PubMed  Google Scholar 

  42. Roth J, De Souza GE (2001) Fever induction pathways: evidence from responses to systemic or local cytokine formation. Braz J Med Biol Res 34(3):301–314

    Article  CAS  PubMed  Google Scholar 

  43. Rummel C, Barth SW, Voss T, Korte S, Gerstberger R, Hübschle T, Roth J (2005) Localized vs. systemic inflammation in Guinea pigs: a role for prostaglandins at distinct points of the fever induction pathways? Am J Phys Regul Integr Comp Phys 289(2):R340–R347

    CAS  Google Scholar 

  44. Soares DM, Hiratsuka Veiga-Souza F, Fabrício AS, Javier Miñano F, Petto Souza GE (2006) CCL3/macrophage inflammatory protein-1alpha induces fever and increases prostaglandin E2 in cerebrospinal fluid of rats: effect of antipyretic drugs. Brain Res 1109(1):83–92

    Article  CAS  PubMed  Google Scholar 

  45. Soares DM, Machado RR, Yamashiro LH, Melo MC, Souza GEP (2008) CINC-1 induces fever by a prostaglandin depending pathway. Brain Res 1233:79–88

    Article  CAS  PubMed  Google Scholar 

  46. Souza GEP, Cardoso RA, Melo MCC, Fabricio ASC, Silva VMS, Lora M, De Brum-Fernandes AJ, Ferreira SH, Zampronio AR (2002) Comparative study of antipyretic profiles of indomethacin and dipyrone in rats. Inflamm Res 51:24–32

    Article  PubMed  Google Scholar 

  47. Souza DG, Bertini R, Vieira AT, Cunha FQ, Poole S, Allegretti M, Colotta F, Teixeira MM (2004) Repertaxin, a novel inhibitor of rat CXCR2 function, inhibits inflammatory responses that follow intestinal ischaemia and reperfusion injury. Br J Pharmacol 143:132–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stojilkovic SS, Catt KJ (1996) Expression and signal transduction pathways of endothelin receptors in neuroendocrine cells. Front Neuroendocrinol 17(3):327–369

    Article  CAS  PubMed  Google Scholar 

  49. Strijbos PJ, Hardwick AJ, Relton JK, Carey F, Rothwell NJ (1992) Inhibition of central actions of cytokines on fever and thermogenesis by lipocortin-1 involves CRF. Am J Phys 263:E632–E636

    CAS  Google Scholar 

  50. Takahashi K, Ghatei MA, Jones PM, Murphy JK, Lam HC, O’Halloran DJ, Bloom SR (1991) Endothelin in human brain and pituitary gland: comparison with rat. J Cardiovasc Pharmacol 17(Suppl 7):S101–S103

    Article  CAS  PubMed  Google Scholar 

  51. Tavares E, Miñano FJ (2000) RANTES: a new prostaglandin dependent endogenous pyrogen in the rat. Neuropharmacology 39(12):2505–2513

    Article  CAS  PubMed  Google Scholar 

  52. Vardam TD, Zhou L, Appenheimer MM, Chen Q, Wang WC, Baumann H, Evans SS (2006) Regulation of a lymphocyte-endothelial-IL-6 trans-signaling axis by fever-range thermal stress: hot spot of immune surveillance. Cancer Immunol Immunother 55(3):292–298

    Article  Google Scholar 

  53. Wuyts A, Van Osselaer N, Haelens A, Samson I, Herdewijn P, Ben-Baruch A, Oppenheim JJ, Proost P, Van Damme J (1997) Characterization of synthetic human granulocyte chemotactic protein 2: usage of chemokine receptors CXCR1 and CXCR2 and in vivo inflammatory properties. Biochemistry 36(9):2716–2723

    Article  CAS  PubMed  Google Scholar 

  54. Yan X, Xiu F, An H, Wang X, Wang J, Cao X (2007) Fever range temperature promotes TLR4 expression and signaling in dendritic cells. Life Sci 80:307–313

    Article  CAS  PubMed  Google Scholar 

  55. Yoshimi H, Kawano Y, Akabane S, Ashida T, Yoshida K, Kinoshita O, Kuramochi M, Omae T (1991) Immunoreactive endothelin-1 contents in brain regions from spontaneously hypertensive rats. J Cardiovasc Pharmacol 17(Suppl 7):S417–S419

    Article  CAS  PubMed  Google Scholar 

  56. Zampronio AR, Soares DM, Souza GEP (2015) Central mediators involved in the febrile response: effects of antipyretic drugs. Temperature 2(4):506–521

    Article  Google Scholar 

  57. Zampronio AR, Melo MCC, Hopkins SJ, Souza GEP (2000) Involvement of CRH in fever induced by a distinct pre-formed pyrogenic factor (PFPF). Inflamm Res 49:1–7

    Article  Google Scholar 

  58. Zampronio AR, Souza GEP, Silva CAA, Cunha FQ, Ferreira SH (1994) Interleukin-8 induces fever by a prostaglandin-independent mechanism. Am J Phys 266:R1670–R1674

    CAS  Google Scholar 

  59. Zarbock A, Allegretti M, Ley K (2008) Therapeutic inhibition of CXCR2 by reparixin attenuates acute lung injury in mice. Br J Pharmacol 155(3):357–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are most grateful to Aparecida Rosa da Silva, Miriam C. C. Melo, and Juliana Vercesi for their expert technical assistance.

Funding

This study was funded by FAPESP (Proc. 050/2008), FAPESB (RED014/2013), and CNPq (Proc. 302575/2015-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis de Melo Soares.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

All experiments were previously approved by the Ethical Commission of Ethics in Animal Research of the College of Medicine of Ribeirão Preto University of São Paulo (protocol no. 050/2008) and were performed in accordance with the Guide for the Care and Use of Laboratory Animals of the Institute for Laboratory Animal Research (1996).

This article does not contain any studies with human participants performed by any of the authors.

Additional information

This article is part of the Topical Collection on Integrative Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamashiro, L.H., de Souza, G.E.P. & de Melo Soares, D. Role of CINC-1 and CXCR2 receptors on LPS-induced fever in rats. Pflugers Arch - Eur J Physiol 471, 301–311 (2019). https://doi.org/10.1007/s00424-018-2222-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-018-2222-0

Keywords

Navigation