Skip to main content
Log in

Effect of hypoxia on TRPV1 and TRPV4 channels in rat pulmonary arterial smooth muscle cells

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Transient receptor potential (TRP) channels of the vanilloid subfamily, mainly TRPV1 and TRPV4, are expressed in pulmonary artery smooth muscle cells (PASMC) and implicated in the remodeling of pulmonary artery, a landmark of pulmonary hypertension (PH). Among a variety of PH subtypes, PH of group 3 are mostly related to a prolonged hypoxia exposure occurring in a variety of chronic lung diseases. In the present study, we thus investigated the role of hypoxia on TRPV1 and TRPV4 channels independently of the increased pulmonary arterial pressure that occurs during PH. We isolated PASMC from normoxic rat and cultured these cells under in vitro hypoxia. Using microspectrofluorimetry and the patch-clamp technique, we showed that hypoxia (1 % O2 for 48 h) significantly increased stretch- and TRPV4-induced calcium responses. qRT-PCR, Western blotting, and immunostaining experiments revealed that the expression of TRPV1 and TRPV4 was not enhanced under hypoxic conditions, but we observed a membrane translocation of TRPV1. Furthermore, hypoxia induced a reorganization of the F-actin cytoskeleton, the tubulin, and intermediate filament networks (immunostaining experiments), associated with an enhanced TRPV1- and TRPV4-induced migratory response (wound-healing assay). Finally, as assessed by immunostaining, exposure to in vitro hypoxia elicited a significant increase in NFATc4 nuclear localization. Cyclosporin A and BAPTA-AM inhibited NFATc4 translocation, indicating the activation of the Ca2+/calcineurin/NFAT pathway. In conclusion, these data point out the effect of hypoxia on TRPV1 and TRPV4 channels in rat PASMC, suggesting that these channels can act as direct signal transducers in the pathophysiology of PH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Butenko O, Dzamba D, Benesova J, Honsa P, Benfenati V, Rusnakova V, Ferroni S, Anderova M (2012) The increased activity of TRPV4 channel in the astrocytes of the adult rat hippocampus after cerebral hypoxia/ischemia. PLoS One 7(6):e39959

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Dahan D, Ducret T, Quignard JF, Marthan R, Savineau JP, Esteve E (2012) Implication of the ryanodine receptor in TRPV4-induced calcium response in pulmonary arterial smooth muscle cells from normoxic and chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol 303(9):L824–L833

    Article  PubMed  CAS  Google Scholar 

  3. de Frutos S, Spangler R, Alo D, Bosc LV (2007) NFATc3 mediates chronic hypoxia-induced pulmonary arterial remodeling with alpha-actin up-regulation. J Biol Chem 282(20):15081–15089

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ducret T, El Arrouchi J, Courtois A, Quignard JF, Marthan R, Savineau JP (2010) Stretch-activated channels in pulmonary arterial smooth muscle cells from normoxic and chronically hypoxic rats. Cell Calcium 48(5):251–259

    Article  PubMed  CAS  Google Scholar 

  5. Ducret T, Guibert C, Marthan R, Savineau JP (2008) Serotonin-induced activation of TRPV4-like current in rat intrapulmonary arterial smooth muscle cells. Cell Calcium 43(4):315–323

    Article  PubMed  CAS  Google Scholar 

  6. Friedman JK, Nitta CH, Henderson KM, Codianni SJ, Sanchez L, Ramiro-Diaz JM, Howard TA, Giermakowska W, Kanagy NL, Gonzalez Bosc LV (2014) Intermittent hypoxia-induced increases in reactive oxygen species activate NFATc3 increasing endothelin-1 vasoconstrictor reactivity. Vasc Pharmacol 60(1):17–24

    Article  CAS  Google Scholar 

  7. Gilbert G, Ducret T, Marthan R, Savineau JP, Quignard JF (2014) Stretch-induced Ca2+ signalling in vascular smooth muscle cells depends on Ca2+ store segregation. Cardiovasc Res 103(2):313–323

    Article  PubMed  CAS  Google Scholar 

  8. Goswami C, Dreger M, Otto H, Schwappach B, Hucho F (2006) Rapid disassembly of dynamic microtubules upon activation of the capsaicin receptor TRPV1. J Neurochem 96(1):254–266

    Article  PubMed  CAS  Google Scholar 

  9. Goswami C, Kuhn J, Heppenstall PA, Hucho T (2010) Importance of non-selective cation channel TRPV4 interaction with cytoskeleton and their reciprocal regulations in cultured cells. PLoS One 5(7):e11654

    Article  PubMed  PubMed Central  Google Scholar 

  10. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450

    PubMed  CAS  Google Scholar 

  11. Guibert C, Ducret T, Savineau JP (2008) Voltage-independent calcium influx in smooth muscle. Prog Biophys Mol Biol 98(1):10–23

    Article  PubMed  CAS  Google Scholar 

  12. Guibert C, Ducret T, Savineau J (2011) Ionic channels as therapeutic targets in pulmonary hypertension. Recent Adv Pulm Vasc Biol 57–90

  13. Guibert C, Ducret T, Savineau JP (2011) Expression and physiological roles of TRP channels in smooth muscle cells. Adv Exp Med Biol 704:687–706

    Article  PubMed  CAS  Google Scholar 

  14. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391(2):85–100

    Article  PubMed  CAS  Google Scholar 

  15. Henrich M, Buckler KJ (2009) Acid-evoked Ca2+ signalling in rat sensory neurones: effects of anoxia and aglycaemia. Pflugers Arch 459(1):159–181

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. House SJ, Potier M, Bisaillon J, Singer HA, Trebak M (2008) The non-excitable smooth muscle: calcium signaling and phenotypic switching during vascular disease. Pflugers Arch 456(5):769–785

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Humbert M, Sitbon O, Simonneau G (2004) Treatment of pulmonary arterial hypertension. N Engl J Med 351(14):1425–1436

    Article  PubMed  CAS  Google Scholar 

  18. Inoue R, Jian Z, Kawarabayashi Y (2009) Mechanosensitive TRP channels in cardiovascular pathophysiology. Pharmacol Ther 123(3):371–385

    Article  PubMed  CAS  Google Scholar 

  19. Jeffery TK, Wanstall JC (2001) Pulmonary vascular remodelling in hypoxic rats: effects of amlodipine, alone and with perindopril. Eur J Pharmacol 416(1–2):123–131

    Article  PubMed  CAS  Google Scholar 

  20. Keseru B, Barbosa-Sicard E, Popp R, Fisslthaler B, Dietrich A, Gudermann T, Hammock BD, Falck JR, Weissmann N, Busse R, Fleming I (2008) Epoxyeicosatrienoic acids and the soluble epoxide hydrolase are determinants of pulmonary artery pressure and the acute hypoxic pulmonary vasoconstrictor response. FASEB J 22(12):4306–4315

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kim MS, Usachev YM (2009) Mitochondrial Ca2+ cycling facilitates activation of the transcription factor NFAT in sensory neurons. J Neurosci 29(39):12101–12114

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Kim KS, Yoo HY, Park KS, Kim JK, Zhang YH, Kim SJ (2012) Differential effects of acute hypoxia on the activation of TRPV1 by capsaicin and acidic pH. J Physiol Sci 62(2):93–103

    Article  PubMed  CAS  Google Scholar 

  23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    PubMed  CAS  Google Scholar 

  24. Mandegar M, Fung YC, Huang W, Remillard CV, Rubin LJ, Yuan JX (2004) Cellular and molecular mechanisms of pulmonary vascular remodeling: role in the development of pulmonary hypertension. Microvasc Res 68(2):75–103

    Article  PubMed  CAS  Google Scholar 

  25. Martin E, Dahan D, Cardouat G, Gillibert-Duplantier J, Marthan R, Savineau JP, Ducret T (2012) Involvement of TRPV1 and TRPV4 channels in migration of rat pulmonary arterial smooth muscle cells. Pflugers Arch 464(3):261–272

    Article  PubMed  CAS  Google Scholar 

  26. Masuyama R, Vriens J, Voets T, Karashima Y, Owsianik G, Vennekens R, Lieben L, Torrekens S, Moermans K, Vanden Bosch A, Bouillon R, Nilius B, Carmeliet G (2008) TRPV4-mediated calcium influx regulates terminal differentiation of osteoclasts. Cell Metab 8(3):257–265

    Article  PubMed  CAS  Google Scholar 

  27. Mochizuki T, Sokabe T, Araki I, Fujishita K, Shibasaki K, Uchida K, Naruse K, Koizumi S, Takeda M, Tominaga M (2009) The TRPV4 cation channel mediates stretch-evoked Ca2+ influx and ATP release in primary urothelial cell cultures. J Biol Chem 284(32):21257–21264

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Muraki K, Iwata Y, Katanosaka Y, Ito T, Ohya S, Shigekawa M, Imaizumi Y (2003) TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ Res 93(9):829–838

    Article  PubMed  CAS  Google Scholar 

  29. Penumatsa KC, Toksoz D, Warburton RR, Hilmer AJ, Liu T, Khosla C, Comhair SA, Fanburg BL (2014) Role of hypoxia-induced transglutaminase 2 in pulmonary artery smooth muscle cell proliferation. Am J Physiol Lung Cell Mol Physiol 307(7):L576–L585. doi:10.1152/ajplung.00162.2014

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Pietra GG, Capron F, Stewart S, Leone O, Humbert M, Robbins IM, Reid LM, Tuder RM (2004) Pathologic assessment of vasculopathies in pulmonary hypertension. J Am Coll Cardiol 43(12 Suppl S):25S–32S

    Article  PubMed  Google Scholar 

  31. Platoshyn O, Yu Y, Golovina VA, McDaniel SS, Krick S, Li L, Wang JY, Rubin LJ, Yuan JX (2001) Chronic hypoxia decreases K(V) channel expression and function in pulmonary artery myocytes. Am J Physiol Lung Cell Mol Physiol 280(4):L801–L812

    PubMed  CAS  Google Scholar 

  32. Pokreisz P, Fleming I, Kiss L, Barbosa-Sicard E, Fisslthaler B, Falck JR, Hammock BD, Kim IH, Szelid Z, Vermeersch P, Gillijns H, Pellens M, Grimminger F, van Zonneveld AJ, Collen D, Busse R, Janssens S (2006) Cytochrome P450 epoxygenase gene function in hypoxic pulmonary vasoconstriction and pulmonary vascular remodeling. Hypertension 47(4):762–770

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Rabinovitch M, Gamble W, Nadas AS, Miettinen OS, Reid L (1979) Rat pulmonary circulation after chronic hypoxia: hemodynamic and structural features. Am J Physiol 236(6):H818–H827

    PubMed  CAS  Google Scholar 

  34. Rath G, Saliez J, Behets G, Romero-Perez M, Leon-Gomez E, Bouzin C, Vriens J, Nilius B, Feron O, Dessy C (2012) Vascular hypoxic preconditioning relies on TRPV4-dependent calcium influx and proper intercellular gap junctions communication. Arterioscler Thromb Vasc Biol 32(9):2241–2249

    Article  PubMed  CAS  Google Scholar 

  35. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302(5651):1704–1709

    Article  PubMed  CAS  Google Scholar 

  36. Ristoiu V, Shibasaki K, Uchida K, Zhou Y, Ton BH, Flonta ML, Tominaga M (2011) Hypoxia-induced sensitization of transient receptor potential vanilloid 1 involves activation of hypoxia-inducible factor-1 alpha and PKC. Pain 152(4):936–945

    Article  PubMed  CAS  Google Scholar 

  37. Simonneau G, Robbins IM, Beghetti M, Channick RN, Delcroix M, Denton CP, Elliott CG, Gaine SP, Gladwin MT, Jing ZC, Krowka MJ, Langleben D, Nakanishi N, Souza R (2009) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 54(1 Suppl):S43–S54

    Article  PubMed  Google Scholar 

  38. Song S, Yamamura A, Yamamura H, Ayon RJ, Smith KA, Tang H, Makino A, Yuan JX (2014) Flow shear stress enhances intracellular Ca2+ signaling in pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension. Am J Physiol Cell Physiol 307(4):C373–C383. doi:10.1152/ajpcell.00115.2014

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Soya M, Sato M, Sobhan U, Tsumura M, Ichinohe T, Tazaki M, Shibukawa Y (2014) Plasma membrane stretch activates transient receptor potential vanilloid and ankyrin channels in Merkel cells from hamster buccal mucosa. Cell Calcium 55(4):208–218

    Article  PubMed  CAS  Google Scholar 

  40. Spencer NJ, Kerrin A, Singer CA, Hennig GW, Gerthoffer WT, McDonnell O (2008) Identification of capsaicin-sensitive rectal mechanoreceptors activated by rectal distension in mice. Neuroscience 153(2):518–534

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Stenmark KR, Meyrick B, Galie N, Mooi WJ, McMurtry IF (2009) Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. Am J Physiol Lung Cell Mol Physiol 297(6):L1013–L1032

    Article  PubMed  CAS  Google Scholar 

  42. Sylvester JT, Shimoda LA, Aaronson PI, Ward JP (2012) Hypoxic pulmonary vasoconstriction. Physiol Rev 92(1):367–520

    Article  PubMed  CAS  Google Scholar 

  43. Vriens J, Appendino G, Nilius B (2009) Pharmacology of vanilloid transient receptor potential cation channels. Mol Pharmacol 75(6):1262–1279

    Article  PubMed  CAS  Google Scholar 

  44. Wang C, Li JF, Zhao L, Liu J, Wan J, Wang YX, Wang J, Wang C (2009) Inhibition of SOC/Ca2+/NFAT pathway is involved in the anti-proliferative effect of sildenafil on pulmonary artery smooth muscle cells. Respir Res 10:123

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang J, Shimoda LA, Sylvester JT (2004) Capacitative calcium entry and TRPC channel proteins are expressed in rat distal pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol 286(4):L848–L858

    Article  PubMed  CAS  Google Scholar 

  46. Wang YX, Wang J, Wang C, Liu J, Shi LP, Xu M, Wang C (2008) Functional expression of transient receptor potential vanilloid-related channels in chronically hypoxic human pulmonary arterial smooth muscle cells. J Membr Biol 223(3):151–159

    Article  PubMed  CAS  Google Scholar 

  47. Wang J, Weigand L, Lu W, Sylvester JT, Semenza GL, Shimoda LA (2006) Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circ Res 98(12):1528–1537

    Article  PubMed  CAS  Google Scholar 

  48. Yaghi A, Sims SM (2005) Constrictor-induced translocation of NFAT3 in human and rat pulmonary artery smooth muscle. Am J Physiol Lung Cell Mol Physiol 289(6):L1061–L1074

    Article  PubMed  CAS  Google Scholar 

  49. Yang XR, Lin AH, Hughes JM, Flavahan NA, Cao YN, Liedtke W, Sham JS (2012) Upregulation of osmo-mechanosensitive TRPV4 channel facilitates chronic hypoxia-induced myogenic tone and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 302(6):L555–L568

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Yang XR, Lin MJ, McIntosh LS, Sham JS (2006) Functional expression of transient receptor potential melastatin- and vanilloid-related channels in pulmonary arterial and aortic smooth muscle. Am J Physiol Lung Cell Mol Physiol 290(6):L1267–L1276

    Article  PubMed  CAS  Google Scholar 

  51. Yoo HY, Park SJ, Seo EY, Park KS, Han JA, Kim KS, Shin DH, Earm YE, Zhang YH, Kim SJ (2012) Role of thromboxane A(2)-activated nonselective cation channels in hypoxic pulmonary vasoconstriction of rat. Am J Physiol Cell Physiol 302(1):C307–C317. doi:10.1152/ajpcell.00153.2011

    Article  PubMed  CAS  Google Scholar 

  52. Zhang R, Zhou L, Li Q, Liu J, Yao W, Wan H (2009) Up-regulation of two actin-associated proteins prompts pulmonary artery smooth muscle cell migration under hypoxia. Am J Respir Cell Mol Biol 41(4):467–475

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Arnaud Courtois for his helpful discussions. This work was supported by the “Fonds de Dotation pour la Recherche en Santé Respiratoire” (grant 2012/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Ducret.

Additional information

Guillaume Cardouat and Marthe Mauroux contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parpaite, T., Cardouat, G., Mauroux, M. et al. Effect of hypoxia on TRPV1 and TRPV4 channels in rat pulmonary arterial smooth muscle cells. Pflugers Arch - Eur J Physiol 468, 111–130 (2016). https://doi.org/10.1007/s00424-015-1704-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-015-1704-6

Keywords

Navigation