Skip to main content

Hypoxia-Dependent TRP Channel Function in Pulmonary Arterial Smooth Muscle Cells

  • Protocol
  • First Online:
TRP Channels in Drug Discovery

Abstract

Hypoxic pulmonary vasoconstriction (HPV) is an essential physiological mechanism of the lung which matches perfusion to ventilation to optimize gas exchange. Pulmonary arterial smooth muscle cells (PASMC) are the effector and possibly also the sensor cells of HPV. Contraction of these cells under hypoxia is induced by an increase in intracellular Ca2+ concentration ([Ca2+]i). To investigate details of the hypoxia-induced increase in [Ca2+]i, we use a live cell imaging procedure with fura-2 in isolated wild-type (WT) and gene-deficient mouse PASMC. We also describe here the manganese-quenching method to determine the role of nonselective cation influx through transient receptor potential (TRP) channels in response to hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 209.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fishman AP (1976) Hypoxia on the pulmonary circulation. How and where it acts. Circ Res 38:221–231

    Article  PubMed  CAS  Google Scholar 

  2. Orchard CH, de Sanchez L, Sykes MK (1983) The relationship between hypoxic pulmonary vasoconstriction and arterial oxygen tension in the intact dog. J Physiol 338:61–74

    PubMed  CAS  Google Scholar 

  3. Voelkel NF (1986) Mechanisms of hypoxic pulmonary vasoconstriction. Am Rev Respir Dis 133:1186–1195

    PubMed  CAS  Google Scholar 

  4. Naeije R, Brimioulle S (2001) Physiology in medicine: importance of hypoxic pulmonary vasoconstriction in maintaining arterial oxygenation during acute respiratory failure. Crit Care 5:67–71

    Article  PubMed  CAS  Google Scholar 

  5. Cornfield DN, Stevens T, McMurtry IF, Abman SH, Rodman DM (1993) Acute hypoxia increases cytosolic calcium in fetal pulmonary artery smooth muscle cells. Am J Physiol 265:L53–L56

    PubMed  CAS  Google Scholar 

  6. Cornfield DN, Stevens T, McMurtry IF, Abman SH, Rodman DM (1994) Acute hypoxia causes membrane depolarization and calcium influx in fetal pulmonary artery smooth muscle cells. Am J Physiol 266:L469–L475

    PubMed  CAS  Google Scholar 

  7. Kato M, Staub NC (1966) Response of small pulmonary arteries to unilobar hypoxia and hypercapnia. Circ Res 19:426–440

    Article  PubMed  CAS  Google Scholar 

  8. Salvaterra CG, Goldman WF (1993) Acute hypoxia increases cytosolic calcium in cultured pulmonary arterial myocytes. Am J Physiol 264:L323–L328

    PubMed  CAS  Google Scholar 

  9. Staub NC (1985) Site of hypoxic pulmonary vasoconstriction. Chest 88:240S–245S

    PubMed  CAS  Google Scholar 

  10. Vadula MS, Kleinman JG, Madden JA (1993) Effect of hypoxia and norepinephrine on cytoplasmic free Ca2+ in pulmonary and cerebral arterial myocytes. Am J Physiol 265:L591–L597

    PubMed  CAS  Google Scholar 

  11. Zhang F, Carson RC, Zhang H, Gibson G, Thomas HM III (1997) Pulmonary artery smooth muscle cell [Ca2+]i and contraction: responses to diphenyleneiodonium and hypoxia. Am J Physiol 273:L603–L611

    PubMed  CAS  Google Scholar 

  12. Dietrich A, Kalwa H, Fuchs B, Grimminger F, Weissmann N, Gudermann T (2007) In vivo TRPC functions in the cardiopulmonary vasculature. Cell Calcium 42:233–244

    Article  PubMed  CAS  Google Scholar 

  13. Ward JP, Robertson TP, Aaronson PI (2005) Capacitative calcium entry: a central role in hypoxic pulmonary vasoconstriction? Am J Physiol Lung Cell Mol Physiol 289:L2–L4

    Article  PubMed  CAS  Google Scholar 

  14. Fuchs B, Dietrich A, Gudermann T, Kalwa H, Grimminger F, Weissmann N (2010) The role of classical transient receptor potential channels in the regulation of hypoxic pulmonary vasoconstriction. Adv Exp Med Biol 661:187–200

    Article  PubMed  CAS  Google Scholar 

  15. Hillier SC, Graham JA, Hanger CC, Godbey PS, Glenny RW, Wagner WW Jr (1997) Hypoxic vasoconstriction in pulmonary arterioles and venules. J Appl Physiol 82:1084–1090

    PubMed  CAS  Google Scholar 

  16. Madden JA, Vadula MS, Kurup VP (1992) Effects of hypoxia and other vasoactive agents on pulmonary and cerebral artery smooth muscle cells. Am J Physiol 263:L384–L393

    PubMed  CAS  Google Scholar 

  17. Sham JS, Crenshaw BR Jr, Deng LH, Shimoda LA, Sylvester JT (2000) Effects of hypoxia in porcine pulmonary arterial myocytes: roles of K(V) channel and endothelin-1. Am J Physiol Lung Cell Mol Physiol 279:L262–L272

    PubMed  CAS  Google Scholar 

  18. Archer SL, Souil E, nh-Xuan AT, Schremmer B, Mercier JC, El YA, Nguyen-Huu L, Reeve HL, Hampl V (1998) Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes. J Clin Invest 101:2319–2330

    Article  PubMed  CAS  Google Scholar 

  19. Madden JA, Keller PA, Kleinman JG (2000) Changes in smooth muscle cell pH during hypoxic pulmonary vasoconstriction: a possible role for ion transporters. Physiol Res 49:561–566

    PubMed  CAS  Google Scholar 

  20. Waypa GB, Marks JD, Mack MM, Boriboun C, Mungai PT, Schumacker PT (2002) Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes. Circ Res 91:719–726

    Article  PubMed  CAS  Google Scholar 

  21. Marshall C, Mamary AJ, Verhoeven AJ, Marshall BE (1996) Pulmonary artery NADPH-oxidase is activated in hypoxic pulmonary vasoconstriction. Am J Respir Cell Mol Biol 15:633–644

    PubMed  CAS  Google Scholar 

  22. Weissmann N, Dietrich A, Fuchs B, Kalwa H, Ay M, Dumitrascu R, Olschewski A, Storch U, Schnitzler M, Ghofrani HA, Schermuly RT, Pinkenburg O, Seeger W, Grimminger F, Gudermann T (2006) Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proc Natl Acad Sci USA 103:19093–19098

    Article  PubMed  CAS  Google Scholar 

  23. Fuchs B (2007) Die essentielle Bedeutung des “Classical Transient Receptor Potential 6” (TRPC6)-Ionenkanals für die akute vaskuläre Hypoxiereaktion der Lunge - Untersuchung an isolierten pulmonalarteriellen glatten Muskelzellen. VVB Laufersweiler, Giessen, Germany

    Google Scholar 

  24. Kalwa H (2009) The physiological function of TRPC6 in endothelial and smooth muscle cells of the lung. Philipps-University Marburg, Marburg, Germany

    Google Scholar 

  25. Aaronson PI, Robertson TP, Knock GA, Becker S, Lewis TH, Snetkov V, Ward JP (2006) Hypoxic pulmonary vasoconstriction: mechanisms and controversies. J Physiol 570:53–58

    Article  PubMed  CAS  Google Scholar 

  26. Estacion M, Sinkins WG, Jones SW, Applegate MA, Schilling WP (2006) TRPC6 forms non-selective cation channels with limited Ca2+ permeability. J 572(Pt 2):359–377

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beate Fuchs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fuchs, B., Kalwa, H., Weissmann, N., Gudermann, T., Dietrich, A. (2012). Hypoxia-Dependent TRP Channel Function in Pulmonary Arterial Smooth Muscle Cells. In: Szallasi, A., Bíró, T. (eds) TRP Channels in Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-077-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-077-9_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-076-2

  • Online ISBN: 978-1-62703-077-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics