Skip to main content
Log in

Activation of ATP secretion via volume-regulated anion channels by sphingosine-1-phosphate in RAW macrophages

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

We report the activation of outwardly rectifying anion currents by sphingosine-1-phosphate (S1P) in the murine macrophage cell line RAW 264.7. The S1P-induced current is mainly carried by anions, because the reversal potential of the current was shifted by replacement of extracellular Cl by glutamate but not when extracellular Na+ was substituted by Tris+. The inhibition of the current by hypertonic extracellular or hypotonic intracellular solution as well as the inhibitory effects of NPPB, tamoxifen, and glibenclamide indicates that the anion current is mediated by volume-regulated anion channels (VRAC). The S1P effect was blocked by intracellular GDPβS and W123, which points to signaling via the S1P receptor 1 (S1PR1) and G proteins. As cytochalasin D diminished the action of S1P, we conclude that the actin cytoskeleton is involved in the stimulation of VRAC. S1P and hypotonic extracellular solution induced secretion of ATP from the macrophages, which in both cases was blocked in a similar way by typical VRAC blockers. We suppose that the S1P-induced ATP secretion in macrophages via activation of VRAC constitutes a functional link between sphingolipid and purinergic signaling in essential processes such as inflammation and migration of leukocytes as well as phagocytosis and the killing of intracellular bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arnon TI, Xu Y, Lo C, Pham T, An J, Coughlin S, Dorn GW, Cyster JG (2011) GRK2-dependent S1PR1 desensitization is required for lymphocytes to overcome their attraction to blood. Science 333:1898–1903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Biswas D, Qureshi OS, Lee WY, Croudace JE, Mura M, Lammas DA (2008) ATP-induced autophagy is associated with rapid killing of intracellular mycobacteria within human monocytes/macrophages. BMC Immunol 9:35–44

    Article  PubMed Central  PubMed  Google Scholar 

  3. Bretschneider F, Markwardt F (1999) Drug-dependent ion channel gating by application of concentration jumps using U-tube technique. Methods Enzymol 294:180–189

    Article  CAS  PubMed  Google Scholar 

  4. Cantiello HF (2001) Role of actin filament organization in CFTR activation. Pflugers Arch 443(Suppl 1):S75–S80

    CAS  PubMed  Google Scholar 

  5. Chalfant CE, Spiegel S (2005) Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling. J Cell Sci 118:4605–4612

    Article  CAS  PubMed  Google Scholar 

  6. Chi H (2011) Sphingosine-1-phosphate and immune regulation: trafficking and beyond. Trends Pharmacol Sci 32:16–24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Corriden R, Insel PA (2010) Basal release of ATP: an autocrine-paracrine mechanism for cell regulation. Sci Signal 3:re1

    Article  PubMed Central  PubMed  Google Scholar 

  8. Costa-Junior HM, Marques-da-Silva C, Vieira FS, Moncao-Ribeiro LC, Coutinho-Silva R (2011) Lipid metabolism modulation by the P2X7 receptor in the immune system and during the course of infection: new insights into the old view. Purinergic Signal 7:381–392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Coutinho-Silva R, Correa G, Sater AA, Ojcius DM (2009) The P2X7 receptor and intracellular pathogens: a continuing struggle. Purinergic Signal 5:197–204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Cuvillier O, Ader I, Bouquerel P, Brizuela L, Gstalder C, Malavaud B (2013) Hypoxia, therapeutic resistance, and sphingosine 1-phosphate. Adv Cancer Res 117:117–141

    Article  CAS  PubMed  Google Scholar 

  11. Cyster JG, Schwab SR (2012) Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu Rev Immunol 30:69–94

    Article  CAS  PubMed  Google Scholar 

  12. Di Virgilio F (2007) Liaisons dangereuses: P2X7 and the inflammasome. Trends Pharmacol Sci 28:465–472

    Article  PubMed  Google Scholar 

  13. Eskandari S, Zampighi GA, Leung DW, Wright EM, Loo DDF (2002) Inhibition of gap junction hemichannels by chloride channel blockers. J Membr Biol 185:93–102

    Article  CAS  PubMed  Google Scholar 

  14. Fairbairn IP, Stober CB, Kumararatne DS, Lammas DA (2001) ATP-mediated killing of intracellular mycobacteria by macrophages is a P2X7-dependent process inducing bacterial death by phagosome-lysosome fusion. J Immunol 167:3300–3307

    Article  CAS  PubMed  Google Scholar 

  15. Fatherazi S, Izutsu KT, Wellner RB, Belton CM (1994) Hypotonically activated chloride current in HSG cells. J Membr Biol 142:181–193

    Article  CAS  PubMed  Google Scholar 

  16. Ferrari D, Chiozzi P, Falzoni S, Hanau S, Di Virgilio F (1997) Purinergic modulation of interleukin-1β release from microglial cells stimulated with bacterial endotoxin. J Exp Med 185:579–582

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, Idzko M, Panther E, Di Virgilio F (2006) The P2X7 receptor: a key player in IL-1 processing and release. J Immunol 176:3877–3883

    Article  CAS  PubMed  Google Scholar 

  18. Furtner T, Zierler S, Kerschbaum HH (2007) Blockade of chloride channels suppresses engulfment of microspheres in the microglial cell line, BV-2. Brain Res 1184:1–9

    Article  CAS  PubMed  Google Scholar 

  19. Garg SK, Volpe E, Palmieri G, Mattei M, Galati D, Martino A, Piccioni MS, Valente E, Bonanno E, De VP, Baldini PM, Spagnoli LG, Colizzi V, Fraziano M (2004) Sphingosine 1-phosphate induces antimicrobial activity both in vitro and in vivo. J Infect Dis 189:2129–2138

    Article  CAS  PubMed  Google Scholar 

  20. Gomez-Munoz A, Kong J, Salh B, Steinbrecher UP (2003) Sphingosine-1-phosphate inhibits acid sphingomyelinase and blocks apoptosis in macrophages. FEBS Lett 539:56–60

    Article  CAS  PubMed  Google Scholar 

  21. Gräler MH (2012) The role of sphingosine 1-phosphate in immunity and sepsis. Am J Clin Exp Immunol 1:90–100

    PubMed Central  PubMed  Google Scholar 

  22. Hait NC, Oskeritzian CA, Paugh SW, Milstien S, Spiegel S (2006) Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases. Biochim Biophys Acta 1758:2016–2026

    Article  CAS  PubMed  Google Scholar 

  23. Hammad SM, Crellin HG, Wu BX, Melton J, Anelli V, Obeid LM (2008) Dual and distinct roles for sphingosine kinase 1 and sphingosine 1 phosphate in the response to inflammatory stimuli in RAW macrophages. Prostaglandins Lipid Mediat 85:107–114

    Article  CAS  Google Scholar 

  24. Han Q, Liu S, Li Z, Hu F, Zhang Q, Zhou M, Chen J, Lei T, Zhang H (2013) DCPIB, a potent volume-regulated anion channel antagonist, attenuates microglia-mediated inflammatory response and neuronal injury following focal cerebral ischemia. Brain Res 1542:176–185

    Article  PubMed  Google Scholar 

  25. Hisadome K, Koyama T, Kimura C, Droogmans G, Ito Y, Oike M (2002) Volume-regulated anion channels serve as an auto/paracrine nucleotide release pathway in aortic endothelial cells. J Gen Physiol 119:511–520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Hisano Y, Nishi T, Kawahara A (2012) The functional roles of S1P in immunity. J Biochem 152:305–311

    Article  PubMed  Google Scholar 

  27. Horton JK, Vanoye CG, Reuss L (1998) Swelling-activated chloride currents in a drug-sensitive cell line and a P glycoprotein-expressing derivative are underlied by channels with the same pharmacological properties. Cell Physiol Biochem 8:246–260

    Article  CAS  PubMed  Google Scholar 

  28. Hughes J, Hatcher J, Chessell I (2007) The role of P2X7 in pain and inflammation. Purinergic Signal 3:163–169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Hwang TC, Horie M, Nairn AC, Gadsby DC (1992) Role of GTP-binding proteins in the regulation of mammalian cardiac chloride conductance. J Gen Physiol 99:465–489

    Article  CAS  PubMed  Google Scholar 

  30. Ishii I, Fukushima N, Ye XQ, Chun J (2004) Lysophospholipid receptors: signaling and biology. Annu Rev Biochem 73:321–354

    Article  CAS  PubMed  Google Scholar 

  31. Iyer SS, Barton JA, Bourgoin S, Kusner DJ (2004) Phospholipases D1 and D2 coordinately regulate macrophage phagocytosis. J Immunol 173:2615–2623

    Article  CAS  PubMed  Google Scholar 

  32. Jørgensen NK, Lambert IH, Hoffmann EK (1996) Role of LTD4 in the regulatory volume decrease response in Ehrlich ascites tumor cells. J Membr Biol 151:159–173

    Article  PubMed  Google Scholar 

  33. Kanaporis G, Brink PR, Valiunas V (2010) Gap junction permeability: selectivity for anionic and cationic probes. Am J Physiol 300:C600–C609

    Article  Google Scholar 

  34. Klausen TK, Hougaard C, Hoffmann EK, Pedersen SF (2006) Cholesterol modulates the volume-regulated anion current in Ehrlich-Lettre ascites cells via effects on Rho and F-actin. Am J Physiol 291:C757–C771

    Article  CAS  Google Scholar 

  35. Klawitter S, Hofmann LP, Pfeilschifter J, Huwiler A (2007) Extracellular nucleotides induce migration of renal mesangial cells by upregulating sphingosine kinase-1 expression and activity. Br J Pharmacol 150:271–280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Kronlage M, Song J, Sorokin L, Isfort K, Schwerdtle T, Leipziger J, Robaye B, Conley PB, Kim HC, Sargin S, Schon P, Schwab A, Hanley PJ (2010) Autocrine purinergic receptor signaling is essential for macrophage chemotaxis. Sci Signal 3:ra55

    Article  PubMed  Google Scholar 

  37. Kubick C, Schmalzing G, Markwardt F (2011) The effect of anions on the human P2X7 receptor. Biochim Biophys Acta Biomembr 1808:2913–2922

    Article  CAS  Google Scholar 

  38. Kubo M, Okada Y (1992) Volume-regulatory Cl- channel currents in cultured human epithelial cells. J Physiol Lond 456:351–371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Kuehnel MP, Reiss M, Anand PK, Treede I, Holzer D, Hoffmann E, Klapperstueck M, Steinberg TH, Markwardt F, Griffiths G (2009) Sphingosine-1-phosphate receptors stimulate macrophage plasma-membrane actin assembly via ADP release, ATP synthesis and P2X7R activation. J Cell Sci 122:505–512

    Article  CAS  PubMed  Google Scholar 

  40. Kuehnel MP, Rybin V, Anand PK, Anes E, Griffiths G (2009) Lipids regulate P2X7-receptor-dependent actin assembly by phagosomes via ADP translocation and ATP synthesis in the phagosome lumen. J Cell Sci 122:499–504

    Article  CAS  PubMed  Google Scholar 

  41. Kunkel GT, Maceyka M, Milstien S, Spiegel S (2013) Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. Nat Rev Drug Discov 12:688–702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Kusner DJ, Thompson CR, Melrose NA, Pitson SM, Obeid LM, Iyer SS (2007) The localization and activity of sphingosine kinase 1 are coordinately regulated with actin cytoskeletal dynamics in macrophages. J Biol Chem 282:23147–23162

    Article  CAS  PubMed  Google Scholar 

  43. Levitan I, Almonte C, Mollard P, Garber SS (1995) Modulation of a volume-regulated chloride current by F-actin. J Membr Biol 147:283–294

    Article  CAS  PubMed  Google Scholar 

  44. Li C, Yang G, Ruan J (2012) Sphingosine kinase-1/sphingosine-1-phosphate receptor type 1 signalling axis is induced by transforming growth factor-beta1 and stimulates cell migration in RAW264.7 macrophages. Biochem Biophys Res Commun 426:415–420

    Article  CAS  PubMed  Google Scholar 

  45. Luheshi NM, Giles JA, Lopez-Castejon G, Brough D (2012) Sphingosine regulates the NLRP3-inflammasome and IL-1beta release from macrophages. Eur J Immunol 42:716–725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Ma W, Hui H, Pelegrin P, Surprenant A (2009) Pharmacological characterization of pannexin-1 currents expressed in mammalian cells. J Pharmacol Exp Ther 328:409–418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Malik ZA, Thompson CR, Hashimi S, Porter B, Iyer SS, Kusner DJ (2003) Mycobacterium tuberculosis blocks Ca2+ signaling and phagosome maturation in human macrophages via specific inhibition of sphingosine kinase. J Immunol 170:2811–2815

    Article  CAS  PubMed  Google Scholar 

  48. Manolopoulos GV, Prenen J, Droogmans G, Nilius B (1997) Thrombin potentiates volume-activated chloride currents in pulmonary artery endothelial cells. Pflugers Arch 433:845–847

    Article  CAS  PubMed  Google Scholar 

  49. McCoy KL, Traynelis SF, Hepler JR (2010) PAR1 and PAR2 couple to overlapping and distinct sets of G proteins and linked signaling pathways to differentially regulate cell physiology. Mol Pharmacol 77:1005–1015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Michaud J, Im DS, Hla T (2010) Inhibitory role of sphingosine 1-phosphate receptor 2 in macrophage recruitment during inflammation. J Immunol 184:1475–1483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Nayak D, Huo Y, Kwang WX, Pushparaj PN, Kumar SD, Ling EA, Dheen ST (2010) Sphingosine kinase 1 regulates the expression of proinflammatory cytokines and nitric oxide in activated microglia. Neuroscience 166:132–144

    Article  CAS  PubMed  Google Scholar 

  52. Okada Y (1997) Volume expansion-sensing outward rectifier Cl- channel: fresh start to the molecular identity and volume sensor. Am J Physiol 273:C755–C789

    CAS  PubMed  Google Scholar 

  53. Okada Y (1998) Cell volume-sensitive chloride channels. Contrib Nephrol 123:21–33

    Article  CAS  PubMed  Google Scholar 

  54. Okada Y (2006) Cell volume-sensitive chloride channels: phenotypic properties and molecular identity. Contrib Nephrol 9–24

  55. Okada Y, Maeno E, Shimizu T, Dezaki K, Wang J, Morishima S (2001) Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD). J Physiol Lond 532:3–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Placido R, Auricchio G, Falzoni S, Battistini L, Colizzi V, Brunetti E, Di Virgilio F, Mancino G (2006) P2X7 purinergic receptors and extracellular ATP mediate apoptosis of human monocytes/macrophages infected with Mycobacterium tuberculosis reducing the intracellular bacterial viability. Cell Immunol 244:10–18

    Article  CAS  PubMed  Google Scholar 

  57. Prakash H, Luth A, Grinkina N, Holzer D, Wadgaonkar R, Gonzalez AP, Anes E, Kleuser B (2010) Sphingosine kinase-1 (SphK-1) regulates Mycobacterium smegmatis infection in macrophages. PLoS One 5:e10657

    Article  PubMed Central  PubMed  Google Scholar 

  58. Puneet P, Yap CT, Wong L, Lam Y, Koh DR, Moochhala S, Pfeilschifter J, Huwiler A, Melendez AJ (2010) SphK1 regulates proinflammatory responses associated with endotoxin and polymicrobial sepsis. Science 328:1290–1294

    Article  CAS  PubMed  Google Scholar 

  59. Qiu Z, Dubin AE, Mathur J, Tu B, Reddy K, Miraglia LJ, Reinhardt J, Orth AP, Patapoutian A (2014) SWELL1, a plasma membrane protein, is an essential component of volume-regulated anion channel. Cell 157:447–458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Rivera J, Proia RL, Olivera A (2008) The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat Rev Immunol 8:753–763

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Rosen H, Stevens RC, Hanson M, Roberts E, Oldstone MB (2013) Sphingosine-1-phosphate and its receptors: Structure, signaling, and influence. Annu Rev Biochem 82:637–662

    Article  CAS  PubMed  Google Scholar 

  62. Sabirov RZ, Okada Y (2004) ATP-conducting maxi-anion channel: a new player in stress-sensory transduction. Jpn J Physiol 54:7–14

    Article  CAS  PubMed  Google Scholar 

  63. Sabirov RZ, Okada Y (2009) The maxi-anion channel: a classical channel playing novel roles through an unidentified molecular entity. J Physiol Sci 59:3–21

    Article  CAS  PubMed  Google Scholar 

  64. Schneider L, Klausen TK, Stock C, Mally S, Christensen ST, Pedersen SF, Hoffmann EK, Schwab A (2008) H-ras transformation sensitizes volume-activated anion channels and increases migratory activity of NIH3T3 fibroblasts. Pflugers Arch 455:1055–1062

    Article  CAS  PubMed  Google Scholar 

  65. Schubert R (1996) Multiple ligand-ion solutions: a guide for solution preparation and computer program understanding. J Vasc Res 33:86–98

    Article  CAS  PubMed  Google Scholar 

  66. Schwab A, Fabian A, Hanley PJ, Stock C (2012) Role of ion channels and transporters in cell migration. Physiol Rev 92:1865–1913

    Article  CAS  PubMed  Google Scholar 

  67. Shen MR, Droogmans G, Eggermont J, Voets T, Ellory JC, Nilius B (2000) Differential expression of volume-regulated anion channels during cell cycle progression of human cervical cancer cells. J Physiol Lond 529:385–394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Spiegel S (2000) Sphingosine 1-phosphate: a ligand for the EDG-1 family of G-protein-coupled receptors. Ann N Y Acad Sci 905:54–60

    Article  CAS  PubMed  Google Scholar 

  69. Spiegel S, Milstien S (2003) Exogenous and intracellularly generated sphingosine 1-phosphate can regulate cellular processes by divergent pathways. Biochem Soc Trans 31:1216–1219

    Article  CAS  PubMed  Google Scholar 

  70. Spiegel S, Milstien S (2011) The outs and the ins of sphingosine-1-phosphate in immunity. Nat Rev Immunol 11:403–415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Szücs G, Heinke S, Droogmans G, Nilius B (1996) Activation of the volume-sensitive chloride current in vascular endothelial cells requires a permissive intracellular Ca2+ concentration. Pflugers Arch 431:467–469

    Article  PubMed  Google Scholar 

  72. Takai E, Tsukimoto M, Harada H, Sawada K, Moriyama Y, Kojima S (2012) Autocrine regulation of TGF-β1-induced cell migration by exocytosis of ATP and activation of P2 receptors in human lung cancer cells. J Cell Sci 125:5051–5060

    Article  CAS  PubMed  Google Scholar 

  73. Voss FK, Ullrich F, Munch J, Lazarow K, Lutter D, Mah N, Andrade-Navarro MA, von Kries JP, Stauber T, Jentsch TJ (2014) Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science 344:634–638

    Article  CAS  PubMed  Google Scholar 

  74. Wei H, Mei YA, Sun JT, Zhou HQ, Zhang ZH (2003) Regulation of swelling-activated chloride channels in embryonic chick heart cells. Cell Res 13:21–28

    Article  CAS  PubMed  Google Scholar 

  75. Weichand B, Weis N, Weigert A, Grossmann N, Levkau B, Brüne B (2013) Apoptotic cells enhance sphingosine-1-phosphate receptor 1-dependent macrophage migration. Eur J Immunol 43:3306–3313

    Article  CAS  PubMed  Google Scholar 

  76. Weigert A, Johann AM, von Knethen A, Schmidt H, Geisslinger G, Brune B (2006) Apoptotic cells promote macrophage survival by releasing the antiapoptotic mediator sphingosine-1-phosphate. Blood 108:1635–1642

    Article  CAS  PubMed  Google Scholar 

  77. Weigert A, Weis N, Brüne B (2009) Regulation of macrophage function by sphingosine-1-phosphate. Immunobiol 214:748–760

    Article  CAS  Google Scholar 

  78. Wu W, Mosteller RD, Broek D (2004) Sphingosine kinase protects lipopolysaccharide-activated macrophages from apoptosis. Mol Cell Biol 24:7359–7369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Ye ZC, Oberheim N, Kettenmann H, Ransom BR (2009) Pharmacological “cross-inhibition” of connexin hemichannels and swelling activated anion channels. Glia 57:258–269

    Article  PubMed Central  PubMed  Google Scholar 

  80. Zierler S, Frei E, Grissmer S, Kerschbaum HH (2008) Chloride influx provokes lamellipodium formation in microglial cells. Cell Physiol Biochem 21:55–62

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Roux program of the Medical Faculty of the Martin Luther University Halle (FKZ 28/29).

Ethical standards

The experiments comply with the current laws of Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz Markwardt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burow, P., Klapperstück, M. & Markwardt, F. Activation of ATP secretion via volume-regulated anion channels by sphingosine-1-phosphate in RAW macrophages. Pflugers Arch - Eur J Physiol 467, 1215–1226 (2015). https://doi.org/10.1007/s00424-014-1561-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1561-8

Keywords

Navigation