Skip to main content
Log in

Validity of a triaxial accelerometer and simplified physical activity record in older adults aged 64–96 years: a doubly labeled water study

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Background

The aim was to examine the validity of a triaxial accelerometer (ACCTRI) and a simplified physical activity record (sPAR) in estimating total energy expenditure (TEE) and physical activity level (PAL) in older adults with the doubly labeled water (DLW) method.

Methods

A total of 44 Japanese elderly individuals (64–96 years), of which 28 were community-dwelling healthy adults with or without sporting habits (S or NS group) and 16 were care home residents with frailty (F group), were included in the study. Basal metabolic rate (BMR) was measured by indirect calorimetry, TEE was obtained by the DLW method, and PAL was calculated as TEE/BMR. Daily step count was monitored by a pedometer (Lifecorder). The 24-h average metabolic equivalent was assessed by ACCTRI and sPAR.

Results

The TEEDLW in men was 2704 ± 353, 2308 ± 442, and 1795 ± 338 kcal d−1, and that in women was 2260 ± 208, 1922 ± 285, and 1421 ± 274 kcal d−1 for the S, NS, and F groups, respectively. ACCTRI and sPAR systematically underestimated actual TEE (− 14.2 ± 11.6 and − 15.3 ± 12.3% for ACCTRI and sPAR, respectively). After diet-induced thermogenesis was taken into account for ACCTRI and sPAR, TEEDLW was significantly correlated with TEEACCTRI (R2 = 0.714) and TEEsPAR (R2 = 0.668). PALDLW was also significantly correlated with PALACCTRI (R2 = 0.438) and PALsPAR (R2 = 0.402).

Conclusions

Age, living conditions, frailty, and sporting habits contribute to TEE and PAL in the elderly population. ACCTRI and sPAR underestimated TEE and PAL, and adequate corrections are required. The corrected ACCTRI and sPAR are both useful tools to estimate TEE and PAL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACCTRI:

Triaxial accelerometer

AEE:

Physical activity energy expenditure

BMI:

Body mass index

DIT:

Diet-induced thermogenesis

DLW:

Doubly labeled water

EER:

Estimated energy requirement

F group:

Care home residents

FFM:

Fat-free mass

FM:

Fat mass

IAEA:

International Atomic Energy Agency

mBMR:

Measured basal metabolic rate

MET:

Metabolic equivalent

Nd:

2H dilution spaces

No:

18O dilution spaces

NS group:

Community-dwelling healthy adults without sporting habits

PAL:

Physical activity level

pBMR:

Predicted basal metabolic rate

rCO2 :

Rate of carbon dioxide production

RDA:

Recommended dietary allowance

RER:

Estimated 24-h respiratory exchange ratio

S group:

Community-dwelling healthy adults with sporting habits

SD:

Standard deviation

sPAR:

Simplified physical activity record

TBW:

Total body water

TEE:

Total energy expenditure

VO2 :

Oxygen uptake

WHO:

World Health Organization

Wt:

Body weight

References

  • Abdullah A, Peeters A, de Courten M, Stoelwinder J (2010) The magnitude of association between overweight and obesity and the risk of diabetes: a meta-analysis of prospective cohort studies. Diabetes Res Clin Pract 89(3):309–319. https://doi.org/10.1016/j.diabres.2010.04.012

    Article  PubMed  Google Scholar 

  • Ando T, Usui C, Ohkawara K, Miyake R, Miyashita M, Park J, Ezaki O, Higuchi M, Tanaka S (2013) Effects of intermittent physical activity on fat utilization over a whole day. Med Sci Sports Exerc 45(7):1410–1418. https://doi.org/10.1249/MSS.0b013e3182885e4b

    Article  PubMed  Google Scholar 

  • Aoyagi Y, Park H, Watanabe E, Park S, Shephard RJ (2009) Habitual physical activity and physical fitness in older Japanese adults: the Nakanojo Study. Gerontology 55(5):523–531. https://doi.org/10.1159/000236326

    Article  PubMed  Google Scholar 

  • Blanc S, Schoeller DA, Bauer D, Danielson ME, Tylavsky F, Simonsick EM, Harris TB, Kritchevsky SB, Everhart JE (2004) Energy requirements in the eighth decade of life. Am J Clin Nutr 79(2):303–310

    Article  CAS  PubMed  Google Scholar 

  • Broadwin J, Goodman-Gruen D, Slymen D (2001) Ability of fat and fat-free mass percentages to predict functional disability in older men and women. J Am Geriatr Soc 49(12):1641–1645

    Article  CAS  PubMed  Google Scholar 

  • Cao ZB, Oh T, Miyatake N, Tsushita K, Higuchi M, Tabata I (2014) Steps per day required for meeting physical activity guidelines in Japanese adults. J Phys Act Health 11(7):1367–1372. https://doi.org/10.1123/jpah.2012-0333

    Article  PubMed  Google Scholar 

  • Chen KY, Muniyappa R, Abel BS, Mullins KP, Staker P, Brychta RJ, Zhao X, Ring M, Psota TL, Cone RD, Panaro BL, Gottesdiener KM, Van der Ploeg LH, Reitman ML, Skarulis MC (2015) RM-493, a melanocortin-4 receptor (MC4R) agonist, increases resting energy expenditure in obese individuals. J Clin Endocrinol Metab 100(4):1639–1645. https://doi.org/10.1210/jc.2014-4024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper JA, Watras AC, Adams AK, Schoeller DA (2009) Effects of dietary fatty acid composition on 24-h energy expenditure and chronic disease risk factors in men. Am J Clin Nutr 89(5):1350–1356. https://doi.org/10.3945/ajcn.2008.27419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper JA, Manini TM, Paton CM, Yamada Y, Everhart JE, Cummings S, Mackey DC, Newman AB, Glynn NW, Tylavsky F, Harris T, Schoeller DA (2013) Longitudinal change in energy expenditure and effects on energy requirements of the elderly. Nutr J 12:73. https://doi.org/10.1186/1475-2891-12-73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crouter SE, Schneider PL, Karabulut M, Bassett DR Jr (2003) Validity of 10 electronic pedometers for measuring steps, distance, and energy cost. Med Sci Sports Exerc 35(8):1455–1460. https://doi.org/10.1249/01.mss.0000078932.61440.a2

    Article  PubMed  Google Scholar 

  • Davison KK, Ford ES, Cogswell ME, Dietz WH (2002) Percentage of body fat and body mass index are associated with mobility limitations in people aged 70 and older from NHANES III. J Am Geriatr Soc 50(11):1802–1809

    Article  PubMed  Google Scholar 

  • Gando Y, Yamamoto K, Murakami H, Ohmori Y, Kawakami R, Sanada K, Higuchi M, Tabata I, Miyachi M (2010) Longer time spent in light physical activity is associated with reduced arterial stiffness in older adults. Hypertension 56(3):540–546. https://doi.org/10.1161/hypertensionaha.110.156331

    Article  CAS  PubMed  Google Scholar 

  • Hara T, Matsumura Y, Yamamoto M, Kitado T, Nakao H, Nakao H, Suzuki T, Yoshikawa T, Fujimoto S (2006) The relationship between body weight reduction and intensity of daily physical activities assessed with 3-dimension accelerometer. Jpn J Phys Fit Sports Med 55(4):385–391

    Article  Google Scholar 

  • Harris AM, Lanningham-Foster LM, McCrady SK, Levine JA (2007) Nonexercise movement in elderly compared with young people. Am J Physiol Endocrinol Metab 292(4):E1207–E1212. https://doi.org/10.1152/ajpendo.00509.2006

    Article  CAS  PubMed  Google Scholar 

  • Hatamoto Y, Yamada Y, Sagayama H, Higaki Y, Kiyonaga A, Tanaka H (2014) The relationship between running velocity and the energy cost of turning during running. PLoS One 9(1):e81850. https://doi.org/10.1371/journal.pone.0081850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatamoto Y, Yamada Y, Higaki Y, Tanaka H (2016) A novel approach for measuring energy expenditure of a single sit-to-stand movement. Eur J Appl Physiol 116(5):997–1004. https://doi.org/10.1007/s00421-016-3355-5

    Article  PubMed  Google Scholar 

  • Health Promotion and Nutrition Division-Health Service Bureau, Ministry of Health and Welfare (1995) Recommended dietary allowances for the Japanese, 4th revision. Dai-ichi Shuppan, Tokyo

    Google Scholar 

  • Ikeda N, Takimoto H, Imai S, Miyachi M, Nishi N (2015) Data resource profile: the Japan National Health and Nutrition Survey (NHNS). Int J Epidemiol 44(6):1842–1849. https://doi.org/10.1093/ije/dyv152

    Article  PubMed  Google Scholar 

  • Ikeda N, Nishi N, Noda H, Noda M (2017) Trends in prevalence and management of diabetes and related vascular risks in Japanese adults: Japan National Health and Nutrition Surveys 2003–2012. Diabetes Res Clin Pract 127:115–122. https://doi.org/10.1016/j.diabres.2017.03.011

    Article  PubMed  Google Scholar 

  • Inoue S, Ohya Y, Odagiri Y, Takamiya T, Suijo K, Kamada M, Okada S, Tudor-Locke C, Shimomitsu T (2011) Sociodemographic determinants of pedometer-determined physical activity among Japanese adults. Am J Prevent Med 40(5):566–571. https://doi.org/10.1016/j.amepre.2010.12.023

    Article  Google Scholar 

  • International Atomic Energy Agency (2009) IAEA human health series no. 3. Vienna International Centre, Vienna, pp 37–40

    Google Scholar 

  • International Atomic Energy Agency (2010) IAEA human health series no. 12. Vienna International Centre, Vienna, pp 9–11

    Google Scholar 

  • Isabel TD, Correia M, Waitzberg DL (2003) The impact of malnutrition on morbidity, mortality, length of hospital stay and costs evaluated through a multivariate model analysis. Clin Nutr 22(3):235–239. https://doi.org/10.1016/S0261-5614(02)00215-7

    Article  Google Scholar 

  • Ishikawa-Takata K, Tabata I, Sasaki S, Rafamantanantsoa HH, Okazaki H, Okubo H, Tanaka S, Yamamoto S, Shirota T, Uchida K, Murata M (2007) Physical activity level in healthy free-living Japanese estimated by doubly labelled water method and International Physical Activity Questionnaire. Eur J Clin Nutr 62(7):885–891

    Article  PubMed  Google Scholar 

  • Itoi A, Yamada Y, Nakae S, Kimura M (2015) Decline in objective physical activity over a 10-year period in a Japanese elementary school. J Physiol Anthropol 34:38. https://doi.org/10.1186/s40101-015-0078-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaiser M, Bandinelli S, Lunenfeld B (2010) Frailty and the role of nutrition in older people. A review of the current literature. Acta Bio Medica Atenei Parmensis 81(Suppl 1):37–45

    Google Scholar 

  • Kodama S, Fujihara K, Ishiguro H, Horikawa C, Ohara N, Yachi Y, Tanaka S, Shimano H, Kato K, Hanyu O, Sone H (2017) Unstable bodyweight and incident type 2 diabetes mellitus: a meta-analysis. J Diabetes Investig 8(4):501–509. https://doi.org/10.1111/jdi.12623

    Article  PubMed  PubMed Central  Google Scholar 

  • Koebnick C, Wagner K, Thielecke F, Moeseneder J, Hoehne A, Franke A, Meyer H, Garcia AL, Trippo U, Zunft HJF (2005) Validation of a simplified physical activity record by doubly labeled water technique. Int J Obes Relat Metab Disord 29(3):302–309

    Article  CAS  Google Scholar 

  • Kumahara H, Schutz Y, Ayabe M, Yoshioka M, Yoshitake Y, Shindo M, Ishii K, Tanaka H (2004) The use of uniaxial accelerometry for the assessment of physical-activity-related energy expenditure: a validation study against whole-body indirect calorimetry. Br J Nutr 91(2):235–243. https://doi.org/10.1079/bjn20031033

    Article  CAS  PubMed  Google Scholar 

  • Matsumura Y, Yamamoto M, Kitado T, Nakamura H, Kidera K, Fujimoto S (2008) High-accuracy physical activity monitor utilizing three-axis accelerometer. Natl Tech Rep 56(2):60–66

    Google Scholar 

  • Melanson EL (2017) The effect of exercise on non-exercise physical activity and sedentary behavior in adults. Obes Rev Off J Int Assoc Study Obes 18(Suppl 1):40–49. https://doi.org/10.1111/obr.12507

    Article  Google Scholar 

  • Meng XL, Rosenthal R, Rubin DB (1992) Comparing correlated correlation-coefficients. Psychol Bull 111(1):172–175

    Article  Google Scholar 

  • Mian OS, Thom JM, Ardigo LP, Narici MV, Minetti AE (2006) Metabolic cost, mechanical work, and efficiency during walking in young and older men. Acta Physiol (Oxf) 186(2):127–139

    Article  CAS  Google Scholar 

  • Miles-Chan JL, Fares EJ, Berkachy R, Jacquet P, Isacco L, Schutz Y, Montani JP, Dulloo AG (2017) Standing economy: does the heterogeneity in the energy cost of posture maintenance reside in differential patterns of spontaneous weight-shifting? Eur J Appl Physiol 117(4):795–807. https://doi.org/10.1007/s00421-017-3563-7

    Article  PubMed  Google Scholar 

  • Ministry of Health, Labour and Welfare Japan (2014) Estimated energy requirement. In: Hishida A, Sasaki S (eds) Dietary reference intakes for Japanese, 2015. Ministry of Health, Labour and Welfare, Tokyo, pp 59–87

    Google Scholar 

  • Ministry of Health, Labour and Welfare Japan (2017) Japan National Health and Nutrition Surveys 2016

  • Murakami H, Iemitsu M, Sanada K, Gando Y, Ohmori Y, Kawakami R, Sasaki S, Tabata I, Miyachi M (2011) Associations among objectively measured physical activity, fasting plasma homocysteine concentration, and MTHFR C677T genotype. Eur J Appl Physiol 111(12):2997–3005. https://doi.org/10.1007/s00421-011-1926-z

    Article  PubMed  Google Scholar 

  • Murakami H, Kawakami R, Nakae S, Nakata Y, Ishikawa-Takata K, Tanaka S, Miyachi M (2016) Accuracy of wearable devices for estimating total energy expenditure: comparison with metabolic chamber and doubly labeled water method. JAMA Intern Med 176(5):702–703. https://doi.org/10.1001/jamainternmed.2016.0152

    Article  PubMed  Google Scholar 

  • Namba H, Yamaguchi Y, Yamada Y, Tokushima S, Hatamoto Y, Sagayama H, Kimura M, Higaki Y, Tanaka H (2012) Validation of web-based physical activity measurement systems using doubly labeled water. J Med Internet Res 14(5):e123

    Article  PubMed  PubMed Central  Google Scholar 

  • Nanri H, Yamada Y, Yoshida T, Okabe Y, Nozawa Y, Itoi A, Yoshimura E, Watanabe Y, Yamaguchi M, Yokoyama K, Ishikawa-Takata K, Koyabashi H, Kimura M, Group K-KS (2018) Sex difference in the association between protein intake and frailty: assessed using the Kihon Checklist Indexes among the elderly. JAMDA (in Press)

  • Ohkawara K, Tanaka S, Ishikawa-Takata K, Tabata I (2008) Twenty-four-hour analysis of elevated energy expenditure after physical activity in a metabolic chamber: models of daily total energy expenditure. Am J Clin Nutr 87(5):1268–1276. https://doi.org/10.1093/ajcn/87.5.1268

    Article  CAS  PubMed  Google Scholar 

  • Ohkawara K, Oshima Y, Hikihara Y, Ishikawa-Takata K, Tabata I, Tanaka S (2011) Real-time estimation of daily physical activity intensity by a triaxial accelerometer and a gravity-removal classification algorithm. Br J Nutr 105(11):1681–1691. https://doi.org/10.1017/s0007114510005441

    Article  CAS  PubMed  Google Scholar 

  • Ortega JD, Farley CT (2007) Individual limb work does not explain the greater metabolic cost of walking in elderly adults. J Appl Physiol 102(6):2266–2273

    Article  PubMed  Google Scholar 

  • Oshima Y, Kawaguchi K, Tanaka S, Ohkawara K, Hikihara Y, Ishikawa-Takata K, Tabata I (2010) Classifying household and locomotive activities using a triaxial accelerometer. Gait Posture 31(3):370–374. https://doi.org/10.1016/j.gaitpost.2010.01.005

    Article  PubMed  Google Scholar 

  • Park J, Ishikawa-Takata K, Tanaka S, Bessyo K, Tanaka S, Kimura T (2017) Accuracy of estimating step counts and intensity using accelerometers in older people with or without assistive devices. J Aging Phys Act 25(1):41–50. https://doi.org/10.1123/japa.2015-0201

    Article  PubMed  Google Scholar 

  • Plasqui G, Westerterp KR (2007) Physical activity assessment with accelerometers: an evaluation against doubly labeled water. Obesity 15(10):2371–2379

    Article  PubMed  Google Scholar 

  • Plasqui G, Bonomi AG, Westerterp KR (2013) Daily physical activity assessment with accelerometers: new insights and validation studies. Obes Rev Off J Int Assoc Study Obes 14(6):451–462. https://doi.org/10.1111/obr.12021

    Article  CAS  Google Scholar 

  • Pontzer H (2015) Constrained total energy expenditure and the evolutionary biology of energy balance. Exerc Sport Sci Rev 43(3):110–116. https://doi.org/10.1249/jes.0000000000000048

    Article  PubMed  Google Scholar 

  • Pontzer H, Durazo-Arvizu R, Dugas LR, Plange-Rhule J, Bovet P, Forrester TE, Lambert EV, Cooper RS, Schoeller DA, Luke A (2016) Constrained total energy expenditure and metabolic adaptation to physical activity in adult humans. Curr Biol CB 26(3):410–417. https://doi.org/10.1016/j.cub.2015.12.046

    Article  CAS  PubMed  Google Scholar 

  • Racette SB, Schoeller DA, Luke AH, Shay K, Hnilicka J, Kushner RF (1994) Relative dilution spaces of 2H- and 18O-labeled water in humans. Am J Physiol Endocrinol Metab 267(4):E585–E590

    Article  CAS  Google Scholar 

  • Rosenberg IH (1989) Summary comments. Am J Clin Nutr 50(5):1231–1233

    Article  Google Scholar 

  • Sagayama H, Yoshimura E, Yamada Y, Ichikawa M, Ebine N, Higaki Y, Kiyonaga A, Tanaka H (2014) Effects of rapid weight loss and regain on body composition and energy expenditure. Appl Physiol Nutr Metab 39(1):21–27. https://doi.org/10.1139/apnm-2013-0096

    Article  CAS  PubMed  Google Scholar 

  • Sagayama H, Yamada Y, Racine NM, Shriver TC, Schoeller DA (2016) Dilution space ratio of 2H and 18O of doubly labeled water method in humans. J Appl Physiol (1985) 120(11):1349–1354. https://doi.org/10.1152/japplphysiol.01037.2015

    Article  CAS  Google Scholar 

  • Schneider PL, Crouter S, Bassett DR (2004) Pedometer measures of free-living physical activity: comparison of 13 models. Med Sci Sports Exerc 36(2):331–335. https://doi.org/10.1249/01.mss.0000113486.60548.e9

    Article  PubMed  Google Scholar 

  • Schoeller DA, Westerterp M (2017) Advances in the assessment of dietary intake. CRC Press, Boca Raton

    Book  Google Scholar 

  • Schoeller DA, Ravussin E, Schutz Y, Acheson KJ, Baertschi P, Jequier E (1986) Energy expenditure by doubly labeled water: validation in humans and proposed calculation. Am J Physiol Regul Integr Comp Physiol 250(5):R823–R830

    Article  CAS  Google Scholar 

  • Sevits KJ, Melanson EL, Swibas T, Binns SE, Klochak AL, Lonac MC, Peltonen GL, Scalzo RL, Schweder MM, Smith AM, Wood LM, Melby CL, Bell C (2013) Total daily energy expenditure is increased following a single bout of sprint interval training. Physiol Rep 1(5):e00131. https://doi.org/10.1002/phy2.131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shephard RJ, Park H, Park S, Aoyagi Y (2013) Objectively measured physical activity and progressive loss of lean tissue in older Japanese adults: longitudinal data from the Nakanojo study. J Am Geriatr Soc 61(11):1887–1893. https://doi.org/10.1111/jgs.12505

    Article  PubMed  Google Scholar 

  • Shephard RJ, Park H, Park S, Aoyagi Y (2017) Objective longitudinal measures of physical activity and bone health in older Japanese: the Nakanojo Study. J Am Geriatr Soc 65(4):800–807. https://doi.org/10.1111/jgs.14553

    Article  PubMed  Google Scholar 

  • Speakman JR, Westerterp KR (2010) Associations between energy demands, physical activity, and body composition in adult humans between 18 and 96 y of age. Am J Clin Nutr 92(4):826–834. https://doi.org/10.3945/ajcn.2009.28540

    Article  CAS  PubMed  Google Scholar 

  • Usui C, Ando T, Ohkawara K, Miyake R, Oshima Y, Hibi M, Oishi S, Tokuyama K, Tanaka S (2015) Validity and reproducibility of a novel method for time-course evaluation of diet-induced thermogenesis in a respiratory chamber. Physiol Rep. https://doi.org/10.14814/phy2.12410

    Article  PubMed  PubMed Central  Google Scholar 

  • Weir JB (1949) New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 109(1–2):1–9

    Article  PubMed  PubMed Central  Google Scholar 

  • Westerterp KR (2013) Physical activity and physical activity induced energy expenditure in humans: measurement, determinants, and effects. Front Physiol 4:90. https://doi.org/10.3389/fphys.2013.00090

    Article  PubMed  PubMed Central  Google Scholar 

  • Westerterp KR (2018) Exercise, energy expenditure and energy balance, as measured with doubly labelled water. Proc Nutr Soc 77(1):4–10. https://doi.org/10.1017/s0029665117001148

    Article  CAS  PubMed  Google Scholar 

  • Westerterp KR, Brouns F, Saris WH, ten Hoor F (1988) Comparison of doubly labeled water with respirometry at low- and high-activity levels. J Appl Physiol (1985) 65(1):53–56. https://doi.org/10.1152/jappl.1988.65.1.53

    Article  CAS  Google Scholar 

  • Wong WW, Clarke LL (2012) A hydrogen gas-water equilibration method produces accurate and precise stable hydrogen isotope ratio measurements in nutrition studies. J Nutr 142(11):2057–2062. https://doi.org/10.3945/jn.112.167957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong WW, Clarke LL (2015) Accuracy of delta(18)O isotope ratio measurements on the same sample by continuous-flow isotope-ratio mass spectrometry. Rapid Commun Mass Spectrometry RCM 29(23):2252–2256. https://doi.org/10.1002/rcm.7390

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2017) ANNEX B Tables of health statistics by country, WHO region and globally. In: World Health Statistics 2017: monitoring health for the SDGs, pp 85–102

  • Yamada Y, Masuo Y, Yokoyama K, Hashii Y, Ando S, Okayama Y, Morimoto T, Kimura M, Oda S (2009a) Proximal electrode placement improves the estimation of body composition in obese and lean elderly during segmental bioelectrical impedance analysis. Eur J Appl Physiol 107(2):135–144. https://doi.org/10.1007/s00421-009-1106-6

    Article  PubMed  Google Scholar 

  • Yamada Y, Yokoyama K, Noriyasu R, Osaki T, Adachi T, Itoi A, Naito Y, Morimoto T, Kimura M, Oda S (2009b) Light-intensity activities are important for estimating physical activity energy expenditure using uniaxial and triaxial accelerometers. Eur J Appl Physiol 105(1):141–152. https://doi.org/10.1007/s00421-008-0883-7

    Article  PubMed  Google Scholar 

  • Yamada Y, Colman RJ, Kemnitz JW, Baum ST, Anderson RM, Weindruch R, Schoeller DA (2013a) Long-term calorie restriction decreases metabolic cost of movement and prevents decrease of physical activity during aging in rhesus monkeys. Exp Gerontol 48(11):1226–1235. https://doi.org/10.1016/j.exger.2013.08.002

    Article  PubMed  Google Scholar 

  • Yamada Y, Noriyasu R, Yokoyama K, Osaki T, Adachi T, Itoi A, Morimoto T, Oda S, Kimura M (2013b) Association between lifestyle and physical activity level in the elderly: a study using doubly labeled water and simplified physical activity record. Eur J Appl Physiol 113(10):2461–2471. https://doi.org/10.1007/s00421-013-2682-z

    Article  PubMed  Google Scholar 

  • Yamada Y, Yokoyama K, Noriyasu R, Osaki T, Adachi T, Itoi A, Naito Y, Morimoto T, Kimura M, Oda S (2016) Erratum to: Calculation of total energy expenditure in publications on physical activity energy by Yamada et al. in 2009 and 2013. Eur J Appl Physiol 116(6):1279–1280. https://doi.org/10.1007/s00421-016-3376-0

    Article  PubMed  Google Scholar 

  • Yamada Y, Nanri H, Watanabe Y, Yoshida T, Yokoyama K, Itoi A, Date H, Yamaguchi M, Miyake M, Yamagata E, Tamiya H, Nishimura M, Fujibayashi M, Ebine N, Yoshida M, Kikutani T, Yoshimura E, Ishikawa-Takata K, Yamada M, Nakaya T, Yoshinaka Y, Fujiwara Y, Arai H, Kimura M (2017) Prevalence of frailty assessed by Fried and Kihon Checklist Indexes in a prospective cohort study: design and demographics of the Kyoto-Kameoka longitudinal study. J Am Med Dir Assoc 18(8):733.e737–733.e715. https://doi.org/10.1016/j.jamda.2017.02.022

    Article  Google Scholar 

  • Yamada Y, Kemnitz JW, Weindruch R, Anderson RM, Schoeller DA, Colman RJ (2018) Caloric restriction and healthy life span: frail phenotype of nonhuman primates in the Wisconsin national primate research center caloric restriction study. J Gerontol Ser A 73(3):273–278. https://doi.org/10.1093/gerona/glw225

    Article  Google Scholar 

  • Yamaguchi M, Yoshida T, Yamada Y, Watanabe Y, Nanri H, Yokoyama K, Date H, Miyake M, Itoi A, Yamagata E, Masumoto T, Okayama Y, Yoshinaka Y, Kimura M (2018) Sociodemographic and physical predictors of non-participation in community based physical checkup among older neighbors: a case-control study from the Kyoto–Kameoka Longitudinal Study, Japan. BMC Public Health 18(1):568. https://doi.org/10.1186/s12889-018-5426-5

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The current research is supported by Grants of JSPS KAKENHI for MK (24240091).

Author information

Authors and Affiliations

Authors

Contributions

YY, KY, and MK conceived and designed the experiments; YY, YA, KY, AI, TA, and MK performed the experiments; YY analyzed the data and wrote the draft. All of the authors approved the final manuscript.

Corresponding author

Correspondence to Yosuke Yamada.

Additional information

Communicated by Klaas R. Westerterp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamada, Y., Hashii-Arishima, Y., Yokoyama, K. et al. Validity of a triaxial accelerometer and simplified physical activity record in older adults aged 64–96 years: a doubly labeled water study. Eur J Appl Physiol 118, 2133–2146 (2018). https://doi.org/10.1007/s00421-018-3944-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-018-3944-6

Keywords

Navigation