Skip to main content
Log in

Research on the high-pressure water jet impacting on the different solids based on improved SPH method

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The study of the evolution of solid fragmentation during high-pressure water jet impact is essential for the control and optimization of high-pressure water jet technology. Smoothed particle hydrodynamics (SPH) method has unique advantages in dealing with such fluid–solid coupling problems due to its meshless and Lagrangian characteristics. Therefore, based on the improved SPH method, this paper simulates the high-pressure water jet impacting the metal and concrete material problems. The results show that, when the water jet impacts the metal block, the penetration depth increases with the increase in the jet velocity, showing an approximately linear relationship. When the water jet impacts the concrete containing initial cracks, the concrete fragmentation zone evolution process is divided into different stages. At the same time, an approximately linear relationship can be observed between the crater depth and jet velocity. When the water jet impacts the homogeneous concrete, the concrete fragmentation goes through the stages of crater formation, conical crack formation, vertical crack formation, and laminar crack formation. Similarly, the crater depth increases with the jet velocity, and the crater depth of homogeneous concrete is smaller compared to that of concrete with initial cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Yang, Z.Q., Dou, L.M., Liu, C., Xu, M.T., Lei, Z., Yao, Y.H.: Application of high-pressure water jet technology and the theory of rock burst control in roadway. Int. J. Min. Sci. Technol. 26(5), 929–935 (2016). https://doi.org/10.1016/j.ijmst.2016.05.037

    Article  Google Scholar 

  2. Ge, Z.L., Zhang, H.W., Zhou, Z., Cao, S.R., Zhang, D., Liu, X.J., Tian, C.: Experimental study on the characteristics and mechanism of high-pressure water jet fracturing in high-temperature hard rocks. Energy 270, 126848 (2023). https://doi.org/10.1016/j.energy.2023.126848

    Article  Google Scholar 

  3. Jiang, H.X., Zhao, H.H., Gao, K.D., Wang, O.G., Wang, Y.X., Meng, D.G.: Numerical investigation of hard rock breakage by high-pressure water jet assisted indenter impact using the coupled SPH/FEM method. Powder Technol. 376, 176–186 (2020). https://doi.org/10.1016/j.powtec.2020.08.028

    Article  CAS  Google Scholar 

  4. Jaya, H.S., Wardana, I.N.G., Hamidi, N., et al.: Hydrolysis reaction utilizing cavitation from high pressure water jet impinging into palm oil bath. Ain Shams Eng. J. 12(4), 3905–3918 (2021). https://doi.org/10.1016/j.asej.2021.03.023

    Article  Google Scholar 

  5. Bowden, F.P., Field, J.E.: The brittle fracture of solids by liquid impact, by solid impact, and by shock. Proc. R. Soc. A-Math. Phys. 1964, 331–352 (1964). https://doi.org/10.1098/rspa.1964.0236

    Article  ADS  Google Scholar 

  6. Ni, H.J., Wang, R.H., Zhang, Y.Q.: A damage model for rock under high pressure water jet. Eng. Mech. 20(5), 59–62 (2003)

    Google Scholar 

  7. Li, G.S., Liao, H.L., Huang, Z.W., et al.: Rock damage mechanisms under ultrahigh pressure water Jet Impact. J. Eng. Mech. 45(10), 284–293 (2009). https://doi.org/10.3901/JME.2009.10.284

    Article  CAS  Google Scholar 

  8. Yang, Y.Y., Li, G.S.: Experimental study on rock breaking and cutting by ultra-high pressure water jet. J. Univ. Pet. 1, 36–37 (2003)

    Google Scholar 

  9. Wang, F., Wang, R., Zhou, W., et al.: Numerical simulation and experimental verification of the rock damage field under particle water jet impacting. Int. J. Impact Eng 102, 169–179 (2017). https://doi.org/10.1016/j.ijimpeng.2016.12.019

    Article  Google Scholar 

  10. Liu, X., Tang, P., Geng, Q., et al.: Effect of abrasive concentration on impact performance of abrasive water jet crushing concrete. Shock. Vib. 1, 3285150 (2019). https://doi.org/10.1155/2019/3285150

    Article  Google Scholar 

  11. Junkar, M., Jureisevic, B., Fajdiga, M., et al.: Finite element analysis of single-particle impact in abrasive water jet machining. Int. J. Impact Eng 32, 1095–1112 (2006). https://doi.org/10.1016/j.ijimpeng.2004.09.006

    Article  Google Scholar 

  12. Mabrouki, T., Raissi, K., Cornier, A.: Numerical simulation and experimental study of the interaction between a pure high-velocity waterjet and targets: contribution to investigate the decoating process. Wear 239, 260–273 (2000). https://doi.org/10.1016/S0043-1648(00)00333-1

    Article  CAS  Google Scholar 

  13. Zhang, X., Lu, M.W., Wang, J.J.: Research progress in arbitrary Lagrangian–Eulerian method. Chin. J. Comput. Mech. 1, 93–104 (1997)

    Google Scholar 

  14. Xu, F., Wang, J., Yang, Y., et al.: On methodology and application of smoothed particle hydrodynamics in fluid, solid and biomechanics. Acta Mech. Sinica-Prc 39, 722185 (2023). https://doi.org/10.1007/s10409-022-22185-x

    Article  MathSciNet  Google Scholar 

  15. Khayyer, A., Gotoh, H., Falahaty, H., et al.: An enhanced ISPH–SPH coupled method for simulation of incompressible fluid–elastic structure interactions. Comput. Phys. Commun. 232, 139–164 (2018). https://doi.org/10.1016/j.cpc.2018.05.012

    Article  MathSciNet  CAS  ADS  Google Scholar 

  16. Khayyer, A., Shimizu, Y., Gotoh, H., et al.: A 3D SPH-based entirely Lagrangian meshfree hydroelastic FSI solver for anisotropic composite structures. Appl. Math. Model. 112, 560–613 (2022). https://doi.org/10.1016/j.apm.2022.07.031

    Article  MathSciNet  Google Scholar 

  17. Zhang, X., Shi, Y., Pan, G., et al.: Study on the impact performance of sandwich hollow cylinders hitting water based on SPH method. Ocean Eng. 197, 106808 (2020). https://doi.org/10.1016/j.oceaneng.2019.106808

    Article  Google Scholar 

  18. Dyka, C.T., Randles, P.W., Ingel, R.P.: Stress points for tension instability in SPH. Int J Numer Methods Eng 40, 2325–2341 (1997). https://doi.org/10.1002/(SICI)1097-0207(19970715)40:13%3c2325::AID-NME161%3e3.0.CO;2-8

    Article  Google Scholar 

  19. Monaghan, J.J.: SPH without a tensile instability. J. Comput. Phys. 159(2), 290–311 (2000). https://doi.org/10.1006/jcph.2000.6439

    Article  ADS  Google Scholar 

  20. Belytschko, T., Xiao, S.: Stability analysis of particle methods with corrected derivatives. Comput. Math. Appl. 43, 329–350 (2002). https://doi.org/10.1016/S0898-1221(01)00290-5

    Article  MathSciNet  Google Scholar 

  21. Islam, M.R.I., Peng, C.: A total Lagrangian SPH method for modelling damage and failure in solids. Int. J. Mech. Sci. 157, 498–511 (2019). https://doi.org/10.1016/j.ijmecsci.2019.05.003

    Article  Google Scholar 

  22. Colagrossi, A., Landrini, M.: Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys. 191(2), 448–475 (2003). https://doi.org/10.1016/S0021-9991(03)00324-3

    Article  ADS  Google Scholar 

  23. Zhang, C., Hu, X.Y., Adams, N.A.: A weakly compressible SPH method based on a low dissipation Riemann solver. J. Comput. Phys. 335, 605–620 (2017). https://doi.org/10.1016/j.jcp.2017.01.027

    Article  MathSciNet  ADS  Google Scholar 

  24. Wang, L., Xu, F., Yang, Y.: Improvement of the tensile instability in SPH scheme for the FEI (Fluid-Elastomer Interaction) problem. Eng. Anal. Bound. Elements 106, 116–125 (2019). https://doi.org/10.1016/j.enganabound.2019.04.032

    Article  MathSciNet  Google Scholar 

  25. Han, L., Hu, X.: SPH modeling of fluid structure interaction. J. Hydrodyn. 30(1), 62–69 (2018). https://doi.org/10.1007/s42241-018-0006-9

    Article  ADS  Google Scholar 

  26. Monaghan, J.J.: Smoothed Particle Hydrodynamics and Its Diverse Applications. Annu. Rev. Fluid Mech. 44, 323–346 (2012). https://doi.org/10.1146/annurev-fluid-120710-101220

    Article  MathSciNet  ADS  Google Scholar 

  27. Liu, M.B., Liu, G.R.: Restoring particle consistency in smoothed particle hydrodynamics. Appl. Numer. Math. 56(1), 19–36 (2006). https://doi.org/10.1016/j.apnum.2005.02.012

    Article  MathSciNet  Google Scholar 

  28. Wang, L., Xu, F., Yang, Y.: An improved total Lagrangian SPH method for modeling solid deformation and damage. Eng Anal Bound Elem 133(1), 286–302 (2021). https://doi.org/10.1016/j.enganabound.2021.09.010

    Article  MathSciNet  Google Scholar 

  29. Hassan, O.I., Ghavamian, A., Lee, C.H.: An upwind vertex centred finite volume algorithm for nearly and truly incompressible explicit fast solid dynamic applications: Total and Updated Lagrangian formulations. J. Comput. Phys.: X 3, 100025 (2019). https://doi.org/10.1016/j.jcpx.2019.100025

    Article  MathSciNet  Google Scholar 

  30. Adami, S., Hu, X.Y., Adams, N.A.: A generalized wall boundary condition for smoothed particle hydrodynamics. J. Comput. Phys. 231(21), 7057–7075 (2012). https://doi.org/10.1016/j.jcp.2012.05.005

    Article  MathSciNet  ADS  Google Scholar 

  31. Wang, L., Xu, F., Yang, Y.: Research on water entry problems of gas-structure-liquid coupling based on SPH method. Ocean Eng. 257, 111623 (2022). https://doi.org/10.1016/j.oceaneng.2022.111623

    Article  Google Scholar 

  32. Ma, L., Bao, R., Guo, Y.: Waterjet penetration simulation by hybrid code of SPH and FEA. Int. J. Impact Eng 35, 1035–1042 (2008). https://doi.org/10.1016/j.ijimpeng.2007.05.007

    Article  Google Scholar 

  33. Liu, J., Zhang, D., Du, S., et al.: Crack formation mechanism of concrete with an initial crack under hydraulic impacting. J. Vib. Shock 39(14), 130–135 (2020)

    CAS  Google Scholar 

  34. Momber, A.W., Wong, Y.C., Budidharma, E., et al.: Surface profiling of low carbon steel with supersonic waterjets. Wear 249, 853–859 (2001). https://doi.org/10.1016/S0043-1648(01)00699-8

    Article  CAS  Google Scholar 

  35. Zhang D (2019) Study on Fracturing Characteristics and Mechanism of High-Pressure Water Jet Impacting Concrete. Dissertation, Chongqing Jiaotong University

Download references

Acknowledgements

This work was supported by the Natural Science Basic Research Program of Shaanxi Province (2023-JC-QN-0022), the Fundamental Research Funds for the Central Universities (CHD, No. 300102282105), the Key Laboratory of Liquid Rocket Engine Technology Foundation Project (6142704210304), the Innovation and entrepreneurship training program (X202210710537).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Wang.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest concerning this article’s research, authorship, and publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Li, J., Xu, F. et al. Research on the high-pressure water jet impacting on the different solids based on improved SPH method. Arch Appl Mech 94, 333–346 (2024). https://doi.org/10.1007/s00419-023-02523-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02523-z

Keywords

Navigation