Skip to main content
Log in

Static travel range augmentation of electrostatically actuated slender nano-cantilevers using particle swarm optimisation

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Along with the electrostatic force and fringing field effect, the van der Waals (vdW) force acts on the electrostatically actuated nano-cantilever (EANC) when the separation between deformable and stationary electrodes is less than 20 nanometers. The vdW force can cause pull-in of the EANC even without the applied voltage when the nano-cantilever length exceeds its detachment length. The vdW force also causes a substantial curtailment of static pull-in instability parameters of the slender EANC compared to corresponding parameters obtained when this force is absent. This paper aims to utilise particle swarm optimisation (PSO) to arrive at the optimised beam width profile to augment the stable static travel range of the EANC having the length close to its detachment length. Continuous shape function having four parameters is utilised as the variable beam width. The weighted residual statement (GWRS) is obtained using the governing equation of the Bernoulli–Euler beam theory and Galerkin’s technique. Static pull-in instability parameters of referential prismatic and variable-width EANCs are evaluated by utilising the GWRS. PSO is employed to arrive at optimised parameters for the variable beam width. The penalty approach is used to impose constraints on design variables. Optimised width profiles of the EANC have been obtained for various values of design constraints and initial separation between electrodes. Static pull-in instability parameters of aforementioned EANCs are validated with corresponding results obtained by three-dimensional finite element simulations performed using COMSOL Multiphysics®. The optimised width profile of the EANC brings a significant augmentation in its stable static travel range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Abdel-Rahman, E.M., Younis, M.I., Nayfeh, A.H.: Characterization of the mechanical behavior of an electrically actuated microbeam. J. Micromech. Microeng. 12(6), 759–766 (2002). https://doi.org/10.1088/0960-1317/12/6/306

    Article  Google Scholar 

  2. Aluru, N.R., White, J.: An efficient numerical technique for electrochemical simulation of complicated microelectromechanical structures. Sens. Actuators A 58(1), 1–11 (1997). https://doi.org/10.1016/S0924-4247(97)80218-X

    Article  Google Scholar 

  3. Ansari, M.Z., Cho, C.: Deflection, frequency, and stress characteristics of rectangular, triangular, and step profile microcantilevers for biosensors. Sensors 9(8), 6046–6057 (2009). https://doi.org/10.3390/s90806046

    Article  Google Scholar 

  4. Ballestra, A., Brusa, E., Gh Munteanu, M., Somà, A.: Experimental characterization of electrostatically actuated in-plane bending of microcantilevers. Microsyst. Technol. 14(7), 909–918 (2008). https://doi.org/10.1007/s00542-008-0597-0

    Article  Google Scholar 

  5. Bathe, K.J.: Finite element procedures. Prentice Hall, New Jersey (1996)

    MATH  Google Scholar 

  6. Batra, R.C., Porfiri, M., Spinello, D.: Review of modeling electrostatically actuated microelectromechanical systems. Smart Mater. Struct. 16(6), R23 (2007). https://doi.org/10.1088/0964-1726/16/6/R01

    Article  Google Scholar 

  7. Chaterjee, S., Pohit, G.: A large deflection model for the pull-in analysis of electrostatically actuated microcantilever beams. J. Sound Vib. 322(4–5), 969–986 (2009). https://doi.org/10.1016/j.jsv.2008.11.046

    Article  Google Scholar 

  8. Chen, K.N., Yu, S.P.: Shape optimization of micromachined biosensing cantilevers. 2007 International Microsystems, Packaging, Assembly and Circuits Technology 301–304 (2007). https://doi.org/10.1109/IMPACT.2007.4433622

  9. Chowdhury, S., Ahmadi, M., Miller, W.C.: A closed-form model for the pull-in voltage of electrostatically actuated cantilever beams. J. Micromech. Microeng. 15(4), 756–763 (2005). https://doi.org/10.1088/0960-1317/15/4/012

    Article  Google Scholar 

  10. Chung, T.T., Lee, C.C., Fan, K.C.: Optimum design of a \(1 \times 2\) mechanical optical switch. Struct. Multidiscip. Optim. 31(3), 229–240 (2006). https://doi.org/10.1007/s00158-005-0580-7

    Article  Google Scholar 

  11. COMSOL Inc: Electrostatically actuated cantilever. Version: COMSOL 5.4 (2022)

  12. Dileesh, P.V., Kulkarni, S.S., Pawaskar, D.N.: Static and dynamic analysis of electrostatically actuated microcantilevers using the spectral element method. ASME Eng. Syst. Des. Anal. 44854, 399–408 (2012). https://doi.org/10.1115/ESDA2012-82536

    Article  Google Scholar 

  13. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: MHS’95—Proceedings of the 6th International Symposium on Micro Machine and Human Science 39–43 (1995). https://doi.org/10.1109/MHS.1995.494215

  14. Eberhart, R.C., Shi, Y.: Particle swarm optimization: developments, applications and resources. Proceedings of the 2001 Congress on Evolutionary Computation 1, 81–86 (2001). https://doi.org/10.1109/CEC.2001.934374

  15. Eberhart, R.C., Simpson, P.K., Dobbins, R.W.: Computational Intelligence PC Tools. Academic Press, Boston (1996)

    Google Scholar 

  16. Elata, D.: On the static and dynamic response of electrostatic actuators. Bull. Polut. Acad. Sci. Tech. Sci. 53(4), 373–384 (2005)

    MATH  Google Scholar 

  17. Gray, G.D., Morgan, M.J., Kohl, P.A.: Electrostatic actuators with expanded tuning range due to biaxial intrinsic stress gradients. J. Microelectromech. Syst. 13(1), 51–62 (2004). https://doi.org/10.1109/JMEMS.2003.823231

    Article  Google Scholar 

  18. Gupta, R.K.: Electrostatic pull-in test structure design for in-situ mechanical property measurements of microelectromechanical systems. PhD Thesis, Massachusetts Institute of Technology (1997)

  19. Hung, E.S., Senturia, S.D.: Generating efficient dynamical models for microelectromechanical systems from a few finite-element simulation runs. J. Microelectromech. Syst. 8(3), 280–289 (1999). https://doi.org/10.1109/84.788632

    Article  Google Scholar 

  20. Huang, J.M., Liew, K.M., Wong, C.H., Rajendran, S., Tan, M.J., Liu, A.Q.: Mechanical design and optimization of capacitive micromachined switch. Sens. Actuators A 93(3), 273–285 (2001). https://doi.org/10.1016/S0924-4247(01)00662-8

    Article  Google Scholar 

  21. Hu, Y.C., Chang, C.M., Huang, S.C.: Some design considerations on the electrostatically actuated microstructures. Sens. Actuators A 112(1), 155–161 (2004). https://doi.org/10.1016/j.sna.2003.12.012

    Article  Google Scholar 

  22. Israelachvili, J.N.: Intermolecular and Surface Forces. Academic Press, United Kingdom (2011)

    Google Scholar 

  23. Joglekar, M.M., Pawaskar, D.N.: An efficient numerical scheme to determine the pull-in parameters of an electrostatic micro-actuator with contact type nonlinearity. ASME Int. Mech. Eng. Congr. Exposit. 11, 483–492 (2007). https://doi.org/10.1115/IMECE2007-41494

    Article  Google Scholar 

  24. Joglekar, M.M., Pawaskar, D.N.: Shape optimization of electrostatically actuated microbeams for extending static and dynamic operating ranges. Struct. Multidiscip. Optim. 46(6), 871–890 (2012). https://doi.org/10.1007/s00158-012-0804-6

    Article  MathSciNet  MATH  Google Scholar 

  25. Kaneria, A.J., Sharma, D.S., Trivedi, R.R.: Static analysis of electrostatically actuated micro cantilever beam. Procedia Eng. 51, 776–780 (2013). https://doi.org/10.1016/j.proeng.2013.01.111

    Article  Google Scholar 

  26. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. Proceedings of ICNN’95 - International Conference on Neural Networks 4, 1942-1948 (1995). https://doi.org/10.1109/ICNN.1995.488968

  27. Kim, P., Lieber, C.M.: Nanotube nanotweezers. Science 286(5447), 2148–2150 (1999). https://doi.org/10.1126/science.286.5447.2148

    Article  Google Scholar 

  28. Krylov, S., Maimon, R.: Pull-in dynamics of an elastic beam actuated by continuously distributed electrostatic force. ASME J. Vib. Acoust. 126(3), 332–342 (2004). https://doi.org/10.1115/1.1760559

    Article  Google Scholar 

  29. Legtenberg, R., Tilmans, H.A.C.: Electrostatically driven vacuum-encapsulated polysilicon resonators Part I. Design and fabrication. Sens. Actuators A 45(1), 57–66 (1994). https://doi.org/10.1016/0924-4247(94)00812-4

    Article  Google Scholar 

  30. Leus, V., Elata, D.: On the dynamic response of electrostatic MEMS switches. J. Microelectromech. Syst. 17(1), 236–243 (2008). https://doi.org/10.1109/JMEMS.2007.908752

    Article  Google Scholar 

  31. O’Mahony, C., Hill, M., Duane, R., Mathewson, A.: Analysis of electromechanical boundary effects on the pull-in of micromachined fixed-fixed beams. J. Micromech. Microeng. 13(4), S75–S80 (2003). https://doi.org/10.1088/0960-1317/13/4/312

    Article  Google Scholar 

  32. Mohsenzadeh, A., Tahani, M., Askari, A.R.: A novel method for investigating the Casimir effect on pull-in instability of electrostatically actuated fully clamped rectangular nano/microplates. J. Nanosci. 2015, 1–9 (2015). https://doi.org/10.1155/2015/328742

    Article  Google Scholar 

  33. Nadal-Guardia, R., Dehe, A., Aigner, R., Castaner, L.M.: Current drive methods to extend the range of travel of electrostatic microactuators beyond the voltage pull-in point. J. Microelectromech. Syst. 11(3), 255–263 (2002). https://doi.org/10.1109/JMEMS.2002.1007404

    Article  Google Scholar 

  34. Nathanson, H.C., Newell, W.E., Wickstrom, R.A., Davis, J.R.: The resonant gate transistor. IEEE Trans. Electron. Devices 14(3), 117–133 (1967). https://doi.org/10.1109/T-ED.1967.15912

    Article  Google Scholar 

  35. Noel, J.G.: Review of the properties of gold material for MEMS membrane applications. IET Circuits Devices Syst. 10(2), 156–161 (2016). https://doi.org/10.1049/iet-cds.2015.0094

    Article  Google Scholar 

  36. Osterberg, P.M., Senturia, S.D.: M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures. J. Microelectromech. Syst. 6(2), 107–118 (1997). https://doi.org/10.1109/84.585788

    Article  Google Scholar 

  37. Piyabongkarn, D., Sun, Y., Rajamani, R., Sezen, A., Nelson, B.J.: Travel range extension of a MEMS electrostatic microactuator. IEEE Trans. Control Syst. Technol. 13(1), 138–145 (2004). https://doi.org/10.1109/TCST.2004.838572

    Article  Google Scholar 

  38. Ramezani, A., Alasty, A., Akbari, J.: Influence of van der Waals force on the pull-in parameters of cantilever type nanoscale electrostatic actuators. Microsyst. Technol. 12(12), 1153–1161 (2006). https://doi.org/10.1007/s00542-006-0244-6

    Article  Google Scholar 

  39. Ramezani, A., Alasty, A., Akbari, J.: Closed-form solutions of the pull-in instability in nano-cantilevers under electrostatic and intermolecular surface forces. Int. J. Solids Struct. 44(14–15), 4925–4941 (2007). https://doi.org/10.1016/j.ijsolstr.2006.12.015

    Article  MATH  Google Scholar 

  40. Ramezani, A., Alasty, A., Akbari, J.: Pull-in parameters of cantilever type nanomechanical switches in presence of Casimir force. Nonlinear Anal. Hybrid Syst 1(3), 364–382 (2007). https://doi.org/10.1016/j.nahs.2006.10.011

    Article  MATH  Google Scholar 

  41. Ramezani, A., Alasty, A., Akbari, J.: Analytical investigation and numerical verification of Casimir effect on electrostatic nano-cantilevers. Microsyst. Technol. 14(2), 145–157 (2008). https://doi.org/10.1007/s00542-007-0409-y

    Article  Google Scholar 

  42. Ramezani, A., Alasty, A., Akbari, J.: Closed-form approximation and numerical validation of the influence of van der Waals force on electrostatic cantilevers at nano-scale separations. Nanotechnol 19(1), 015501 (2008). https://doi.org/10.1088/0957-4484/19/01/015501

    Article  Google Scholar 

  43. Rao, S.S.: Mechanical Vibrations. Pearson Education, United Kingdom (2018)

    Google Scholar 

  44. Rinaldi, G., Packirisamy, M., Stiharu, I.: Frequency tuning AFM optical levers using a slot. Microsyst. Technol. 14(3), 361–369 (2008). https://doi.org/10.1007/s00542-007-0456-4

    Article  Google Scholar 

  45. Sadeghian, H., Rezazadeh, G., Osterberg, P.M.: Application of the generalized differential quadrature method to the study of pull-in phenomena of MEMS switches. J. Microelectromech. Syst. 16(6), 1334–1340 (2007). https://doi.org/10.1109/JMEMS.2007.909237

    Article  Google Scholar 

  46. Serry, F.M., Walliser, D., Maclay, G.J.: The anharmonic Casimir oscillator (ACO)-the Casimir effect in a model microelectromechanical system. J. Microelectromech. Syst. 4(4), 193–205 (1995). https://doi.org/10.1109/84.475546

    Article  Google Scholar 

  47. Tas, N., Sonnenberg, T., Jansen, H., Legtenberg, R., Elwenspoek, M.: Stiction in surface micromachining. J. Micromech. Microeng. 6(4), 385–397 (1996). https://doi.org/10.1088/0960-1317/6/4/005

    Article  Google Scholar 

  48. Timoshenko, S.P.: Theory of Plates and Shells. McGraw Hill, New York (1987)

    MATH  Google Scholar 

  49. Trivedi, R.R., Joglekar, M.M., Shimpi, R.P., Pawaskar, D.N.: Shape optimization of electrostatically driven microcantilevers using simulated annealing to enhance static travel range. SPIE Micro/Nano Mater. Devices Syst. 8923, 756–763 (2013). https://doi.org/10.1117/12.2033784

    Article  Google Scholar 

  50. Trivedi, R.R., Bhushan, A., Joglekar, M.M., Pawaskar, D.N., Shimpi, R.P.: Enhancement of static and dynamic travel range of electrostatically actuated microbeams using hybrid simulated annealing. Int. J. Mech. Sci. 98, 93–110 (2015). https://doi.org/10.1016/j.ijmecsci.2015.03.024

    Article  Google Scholar 

  51. Trivedi, R.R., Pawaskar, D.N., Shimpi, R.P.: Enhancement of dynamic travel range of electrostatically driven cantilever microbeam using modified particle swarm optimization. Procedia Eng. 144, 543–550 (2016). https://doi.org/10.1016/j.proeng.2016.05.040

    Article  Google Scholar 

  52. Trivedi, R.R., Pawaskar, D.N., Shimpi, R.P.: Optimization of static and dynamic travel range of electrostatically driven microbeams using particle swarm optimization. Adv. Eng. Softw. 97, 1–16 (2016). https://doi.org/10.1016/j.advengsoft.2016.01.005

    Article  Google Scholar 

  53. Wen-Hui, L., Ya-Pu, Z.: Dynamic behaviour of nanoscale electrostatic actuators. Chin. Phys. Lett. 20(11), 2070–2073 (2003). https://doi.org/10.1088/0256-307X/20/11/049

    Article  Google Scholar 

  54. Zhang, Y., Zhao, Y.P.: Numerical and analytical study on the pull-in instability of micro-structure under electrostatic loading. Sens. Actuators A 127(2), 366–380 (2006). https://doi.org/10.1016/j.sna.2005.12.045

    Article  Google Scholar 

  55. Zhang, W.M., Yan, H., Peng, Z.K., Meng, G.: Electrostatic pull-in instability in MEMS/NEMS: a review. Sens. Actuators A 214, 187–218 (2014). https://doi.org/10.1016/j.sna.2014.04.025

    Article  Google Scholar 

  56. Zwilsky, K.M., Langer, E.L.: ASM Handbook Volume 2, Properties and Selection: Nonferrous Alloys and Special Purpose Materials. ASM International (2001)

Download references

Funding

The authors declare that no funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rameshchandra P. Shimpi.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Replication of results

The results provided in this paper are generated by MATLAB® R2022a codes developed by the authors. These MATLAB® R2022a codes can be made available to interested parties upon request by contacting the corresponding author via email.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakhare, K.S., Guruprasad, P.J. & Shimpi, R.P. Static travel range augmentation of electrostatically actuated slender nano-cantilevers using particle swarm optimisation. Arch Appl Mech 93, 2051–2080 (2023). https://doi.org/10.1007/s00419-023-02372-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02372-w

Keywords

Navigation