Skip to main content
Log in

Influence of van der Waals force on the pull-in parameters of cantilever type nanoscale electrostatic actuators

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this paper, the influence of the van der Waals force on two main parameters describing an instability point of cantilever type nanomechanical switches, which are the pull-in voltage and deflection are investigated by using a distributed parameter model. The fringing field effect is also taken into account. The nonlinear differential equation of the model is transformed into the integral form by using the Green’s function of the cantilever beam. The integral equation is solved analytically by assuming an appropriate shape function for the beam deflection. The detachment length and the minimum initial gap of the cantilever type switches are given, which are the basic design parameters for NEMS switches. The pull-in parameters of micromechanical electrostatic actuators are also investigated as a special case of our study by neglecting the van der Waals force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bernstein D, Guidotti P, Pelesko JA (2000) Mathematical analysis of an electrostatically actuated MEMS device. In: Proceedings of modeling and simulation of microsystems (MSM). San Diego pp 489–492

  • Bochobza-Degani O, Nemirovsky Y (2002) Modeling the pull-in parameters of electrostatic actuators with a novel lumped two degrees of freedom pull-in model. Sens Actuators A 97–98:569–578

    Article  Google Scholar 

  • Buks E, Roukes ML (2001) Stiction, adhesion energy, and the Casimir effect in micromechanical systems. Phys Rev B 63:033402

    Article  Google Scholar 

  • Cheng J, Zhe J, Wu X (2004) Analytical and finite element model pull-in study of rigid and deformable electrostatic microactuators. J Micromech Microeng 14:57–68

    Article  Google Scholar 

  • Chowdhury S, Ahmadi M, Miller WC (2005) A closed-form model for the pull-in voltage of electrostatically actuated cantilever beams. J Micromech Microeng 15:756–763

    Article  Google Scholar 

  • Coventor Inc. Pull-in voltage analysis of electrostatically-actuated beams verifying accuracy of Coventor behavioral models. Available online at http://www.coventor.com

  • Dequesnes M, Rotkin SV, Aluru NR (2002) Calculation of pull-in voltages for carbon nanotube-based nanoelectromechanical switches. Nanotechnology 13:120–131

    Article  Google Scholar 

  • Gupta RK (1997) Electrostatic pull-in test structure design for in-situ mechanical property measurements of microelectromechanical systems. PhD thesis, MIT, Cambridge

  • Huang JM, Liew KM, Wong CH, Rajendran S, Tan MJ, Liu AQ (2001) Mechanical design and optimization of capacitive micromachined switch. Sens Actuators A 93:273–285

    Article  Google Scholar 

  • Israelachvili JN (1992) Intermolecular and surface forces. Academic, London

    Google Scholar 

  • Kim P, Lieber CM (1999) Nanotube nanotweezers. Science 286:2148–2150

    Article  Google Scholar 

  • Lin WH, Zhao YP (2003) Dynamic behavior of nanoscale electrostatic actuators. Chin Phys Lett 20:2070–2073

    Article  Google Scholar 

  • Osterberg PM (1995) Electrostatically actuated micromechanical test structures for material property measurement. PhD dissertation, MIT, Cambridge

  • Osterberg PM, Senturia SD (1997) M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures. J Microelectromech Syst 6(2):107–118

    Article  Google Scholar 

  • Pamidighantam S, Puers R, Baert K, Tilmans HAC (2002) Pull-in voltage analysis of electrostatically actuated beam structures with fixed-fixed and fixed-free end conditions. J Micromech Microeng 12:458–464

    Article  Google Scholar 

  • Pelesko JA (2001) Multiple solutions in electrostatic MEMS. In: Proceedings of modeling and simulation of microsystems (MSM), Hilton Head, pp 290–293

  • Pelesko JA, Bernstein DH (2003) Modeling MEMS and NEMS. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Petersen KE (1978) Dynamic micromechanics on silicon: techniques and devices. IEEE Trans Electron Devices ED-25(10):1241–1250

    Article  Google Scholar 

  • Rotkin SV (2002) Analytical calculations for nanoscale electromechanical systems. Electrochem Soc Proc 6:90–97

    Google Scholar 

  • van Spengen WM, Puers R, De Wolf I (2002) A physical model to predict stiction in MEMS. J Micromech Microeng 12:702–713

    Article  Google Scholar 

  • Timoshenko S (1987) Theory of plates and shells. McGraw Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asghar Ramezani.

Appendix

Appendix

Solutions of the integrals used in Eq. 29 are

$${\int {\frac{{z^{2}}}{{(a^{2} - z^{2})^{2}}}}}{\text{d}}z = \frac{1}{{4a}}\ln {\left| {\frac{{z - a}}{{z + a}}} \right|} + \frac{z}{{2(a^{2} - z^{2})}}$$
(A.1)
$${\int {\frac{{z^{3}}}{{(a^{2} - z^{2})^{2}}}}}{\text{d}}z = \frac{1}{2}\ln {\left| {z^{2} - a^{2}} \right|} + \frac{{a^{2}}}{{2(a^{2} - z^{2})}}$$
(A.2)
$${\int {\frac{{z^{2}}}{{(a^{2} - z^{2})^{3}}}}}{\text{d}}z = \frac{1}{{16a^{3}}}\ln {\left| {\frac{{z - a}}{{z + a}}} \right|} + \frac{{z(a^{2} + z^{2})}}{{8a^{2} (a^{2} - z^{2})^{2}}}$$
(A.3)
$${\int {\frac{{z^{3}}}{{(a^{2} - z^{2})^{3}}}}}{\text{d}}z = \frac{{2z^{2} - a^{2}}}{{4(a^{2} - z^{2})^{2}}}$$
(A.4)
$${\int {\frac{{z^{2}}}{{a^{2} - z^{2}}}}}{\text{d}}z = - z - \frac{1}{2}a\,\ln {\left| {\frac{{z - a}}{{z + a}}} \right|}$$
(A.5)
$${\int {\frac{{z^{3}}}{{a^{2} - z^{2}}}}}{\text{d}}z = - \frac{1}{2}z^{2} - \frac{1}{2}a^{2} \,\ln {\left| {z^{2} - a^{2}} \right|}.$$
(A.6)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramezani, A., Alasty, A. & Akbari, J. Influence of van der Waals force on the pull-in parameters of cantilever type nanoscale electrostatic actuators. Microsyst Technol 12, 1153–1161 (2006). https://doi.org/10.1007/s00542-006-0244-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-006-0244-6

Keywords

Navigation