Skip to main content
Log in

Experimental characterization of electrostatically actuated in-plane bending of microcantilevers

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Experimental validation of numerical models developed by the authors to predict the static behaviour of microelectrostatic actuators is described. Cantilever microbeams, currently used in connection with RF-MEMS and micro-scale material testing were analysed. A set of microcantilevers, bending in the plane of the wafer, i.e. in the same plane as the profiling system’s target, was tested. This differs from the popular case of out-of-plane microbeams, usually studied in the literature. Geometry nonlinearity caused by large deflection of the microbeam was investigated and nonlinear coupled formulation of electromechanical equilibrium was performed. Coupled-field analysis was implemented using the Finite Element Method (FEM), to predict displacements and pull-in voltage measured by Fogale Zoomsurf 3D, subsequently plotting the displacement-versus-voltage curve to complete model validation. FEM nonlinear analysis, based on iterative approach with mesh morphing, and FEM non-incremental approach, including a special element proposed by the authors, are compared to the linear solution and to experimental results. Geometry nonlinearity appears relevant in microbeam modelling and requires a nonlinear solution of the coupled problem. Investigative work, which compared the results of 2D and 3D models to experimental data, revealed that some three dimensional effects are significant in model validation, but the 2D approach may be effective in predicting static behaviour provided that at least a microbeam thickness equivalent is adopted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adamsy SG, Bertsch FM, Shaw KA, Hartwell PG, Moon FC, MacDonald NC (1998) Capacitance based tunable resonators. J Micromech Microeng 8:15–23

    Article  Google Scholar 

  • Anac O, Basdogan I (2006) Model validation methodology for design of micro systems. In: Proc ESDA2006 8th biennial ASME conf on eng syst des and analysis, Turin, 2006

  • Bagolini A, Faes A, Margesin B (2005) Analytical model for magnified displacement stress test structures. In: Proc IEEE—DTIP 2005, Montreux, 2005; ISBN: 2-84813-0357-1

  • Bettini P, Brusa E, Munteanu M, Specogna R, Trevisan F (2007) Static behaviour prediction of microelectrostatic actuators by discrete geometric approaches (DGA). In: Proc IEEE int conf on computational electromagnetics, COMPUMAG 2007, Aachen, 2007

  • Bosseboeuf A, Petitgrand S (2003) Characterization of the static and dynamic behaviour of M(O)EMS by optical techniques: status and trends. J Micromech Microeng 13:S23–S33

    Article  Google Scholar 

  • Bhushan B (2004) Handbook of nanotechnology. Springer, Berlin

    Google Scholar 

  • Brusa E, Munteanu M Gh (2006) Coupled-field FEM nonlinear dynamics analysis of continuous microsystems by non incremental approach. Analog Integr Circuits Signal Process 48:7–14

    Article  Google Scholar 

  • Casinovi G (2004) Physical microelectromechanical resonator model. Proc. IEEE—DTIP 2004, Montreux, 2004; ISBN 2-84813-026-1

  • Cheng J, Zhe J, Wu Z (2004) Analytical and finite element model pull-in study of rigid and deformable electrostatic microactuators. J Micromech Microeng 14:57–68

    Article  Google Scholar 

  • De Bona F, Enikov E (eds), Brusa E, Munteanu M, Lazarov KV, Zelenika S, Man Lee L, Liun Cheung LS, Zohar Y (2006) Microsystems mechanical design, CISM Lectures Series. Springer, Wien, ISBN: 3211374531

  • Fang W (1999) Determination of the elastic modulus of thin film materials using self-deformed micromachined cantilevers. J Micromech Microeng 9:230–235

    Article  Google Scholar 

  • Frlcke J, Obermeier E (1993) Cantilever beam accelerometer based on surface micromachining technology. J Micromech Microeng 3:190–192

    Article  Google Scholar 

  • Gaddi R, Bellei M, Gnudi A, Margesin B, Giacomozzi F (2004) Low-loss ohmic RF-MEMS switches with interdigitated electrode topology. In: Proc IEEE—DTIP 2004, Montreux, 2004; ISBN 2-84813-026-1

  • Gaddi R (2003) The hierarchical HDL-based design of an integrated MEMS-CMOS oscillator. In: Proc IEEE—DTIP 2003, Mandelieu, 2003; ISBN 0-7803-7951-9

  • Greek S, Ericson F, Johansson S, Furtsch M, Rump A (1999) Mechanical characterization of thick polysilicon films: Young’s modulus and fracture strength evaluated with microstructures. J Micromech Microeng 9:245–251

    Article  Google Scholar 

  • Harness T, Syms RA (2000) Characteristic modes of electrostatic comb-drive X–Y microactuators. J Micromech Microeng 10:7–14

    Article  Google Scholar 

  • Hoffmann M, Nusse D, Voges E (2001) Electrostatic parallel-plate actuators with large deflections for use in optical moving-fibre switches. J Micromech Microeng 11:323–328

    Article  Google Scholar 

  • Holbery JD, Eden VL (2000) A comparison of scanning microscopy cantilever force constants determined using a nanoindentation testing apparatus. J Micromech Microeng 10:85–92

    Article  Google Scholar 

  • Iannacci I, Del Tin L, Gaddi R, Gnudi A, Rangra KJ (2005) Compact modeling of a mems toggle-switch based on modified nodal analysis. In: Proc IEEE—DTIP 2005, Montreux, 2005; ISBN: 2-84813-0357-1

  • Jaecklint VP, Lindert C, de Rooijt NF, Moret JM (1992) Micromechanical comb actuators with low driving voltage. J Micromech Microeng 2:250–255

    Article  Google Scholar 

  • Koch M, Evans AGR, Brunnschweiler A (1997) Characterization of micromachined cantilever valves. J Micromech Microeng 7:221–223

    Article  Google Scholar 

  • Lishchynska M, Cordero N, Slattery O (2004) Development of behavioural models for MEMS structures. In: Proc IEEE—DTIP 2004, Montreux, 2004; ISBN 2-84813-026-1

  • Lucas S, Kis-Sion K, Pinel J, Bonnaud O (1997) Polysilicon cantilever beam using surface micromachining technology for application in microswitches. J Micromech Microeng 7:159–161

    Article  Google Scholar 

  • Choi B, Lovell EG (1997) Improved analysis of microbeams under mechanical and electrostatic loads. J Micromech Microeng 7:24–29

    Article  Google Scholar 

  • McCord MA, Dana A, Pease RFW (1998) The micromechanical tunneling transistor. J Micromech Microeng 8:209–212

    Article  Google Scholar 

  • Merlijn van Spengen W, Puers R, Mertens R, De Wolf I (2003) A low frequency electrical test set-up for the reliability assessment of capacitive RF MEMS switches. J Micromech Microeng 13:604–612

    Article  Google Scholar 

  • Munteanu M, De Bona F, Collenz A, Brusa E (2004) Geometrical nonlinearities of electrostatically actuated microbeams. In: Proc ECCOMAS 2004, Jyväskylä, CD-ROM, vol I. p 12, 24–28 July 2004; ISBN: 951-39-1869-6

  • Munteanu M Gh., Brusa E (2005) A new FEM approach to the coupled-field analysis of electrostatic microactuators dynamics. In: Proc ECCOMAS thematic conference on coupled problems 2005, Santorini, 2005; ISBN: 84-95999-71-4

  • Najafi K (1991) Smart sensors. J Micromech Microeng 1:86–102

    Article  Google Scholar 

  • Nieminen H, Ermolov V, Nybergh K, Silanto S, Ryh¨anen T (2002) Microelectromechanical capacitors for RF applications. J Micromech Microeng 12:177–186

    Article  Google Scholar 

  • O’Mahony C, Duane R, Hill M, Mathewson A (2004) Electromechanical modelling of low-voltage RF MEMS switches. Proc. IEEE—DTIP 2004, Montreux, 2004; ISBN 2-84813-026-1

  • Ono T, Youn Sim D, Esashi M (2000) Micro-discharge and electric breakdown in a micro-gap. J Micromech Microeng 10:445–451

    Article  Google Scholar 

  • Paci D, Kirstein K-U, Vancura C, Lichtenberg J, Baltes H (2004) A behavioural model of resonant cantilevers for chemical sensing. In: Proc IEEE—DTIP 2004, Montreux, 2004; ISBN 2-84813-026-1

  • Pamidighantam S, Puer R, Baert K, Tilmans H (2002) Pull-in voltage analysis of electrostatically actuated beam structures with fixed–fixed and fixed–free end conditions. J Micromech Microeng 12:458–464

    Article  Google Scholar 

  • Petitgrand S, Courbet B, Bosseboeuf A (2003) Characterization of static and dynamic optical actuation of Al microbeams by microscopic interferometry techniques. J Micromech Microeng 13:S113–S118

    Article  Google Scholar 

  • Rebeiz G (2003) RF MEMS, theory, design and technology. Wiley, Newyork

  • Sattler R, Voigt P, Pradel H, Wachutka G (2001) Innovative design and modelling of a micromechanical relay with electrostatic actuation. J Micromech Microeng 11:428–433

    Article  Google Scholar 

  • Senturia SD (2001) Microsystems design. Kluwer, Boston

    Google Scholar 

  • Somà A, Collenz A, De Bona F, Gugliotta A (2004) Large deflections of microbeams under electrostatic loads. J Micromechanics Miceoengineering 14:365–373. ISSN:0960-1317

    Article  Google Scholar 

  • Somà A, Van der Poel Filho CJ, Gugliotta A, Pavanello R (2005) Dynamic identification of MEMS by eigensensitivity and Newmark simulation. Analog Integr Circuits Signal Processing 44:155–162

    Article  Google Scholar 

  • Tønnesen T, Ludtke O, Noetzel J, Binder J, Mader G (1997) Simulation, design and fabrication of electroplated acceleration switches. J Micromech Microeng 7:237–239

    Article  Google Scholar 

  • Tsou CF, Yin H, Fang W (2001) On the out-of-plane deformation of V-shaped micromachined beams. J Micromech Microeng 11:153–160

    Article  Google Scholar 

  • Vietzorreck L, Elata D, Mezzanotte P (2005) AMICOM–workshop on design and modelling methods for RF MEMS. Montreux, Switzerland

    Google Scholar 

  • Walker JA (2000) The future of MEMS in telecommunications networks. J Micromech Microeng 10:R1–R7

    Article  Google Scholar 

  • Yao JJ (2000) RF MEMS from a device perspective. J Micromech Microeng 10:R9–R38

    Article  Google Scholar 

  • Younis MI, Abdel-Rahman EM, Nayfeh A (2003) A reduced-order model for electrically actuated microbeam-based MEMS. J Microelectromech Syst 12(5):672–680

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially funded by the Italian Ministry for Universities, through grant PRIN-2005/2005091729, O.U. Torino (Prof. A. Somà) and O.U. Udine (Prof. E. Brusa). Microcantilevers were built by ST Microelectronics (Cornaredo, Italy). Authors thank the above institutions for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Somà.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballestra, A., Brusa, E., Gh Munteanu, M. et al. Experimental characterization of electrostatically actuated in-plane bending of microcantilevers. Microsyst Technol 14, 909–918 (2008). https://doi.org/10.1007/s00542-008-0597-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-008-0597-0

Keywords

Navigation