Skip to main content
Log in

Nonlinear numerical analysis and averaging method applied atomic force microscopy with viscoelastic term

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

We investigated the nonlinear behavior of an atomic force microscopy system with the contribution of the medium viscoelasticity term. Atomic force microscopy is one of the most used techniques for analyzing the surface topology of samples of interest. We propose a mathematical model for the nonlinear dynamics of the probe and we also assign a term that describes the viscoelasticity of the medium in which the probe is inserted. For our numerical analysis of nonlinear dynamics, we used the Lyapunov Exponent, Bifurcation Diagram, phase maps and Poincaré maps. We also determine a solution for a set of parameters using perturbation theory. In this paper, it is also shown that using higher approximations of averaging method, which allows to solve systems of differential equations with slowly changing variables instead systems with fast change of variables, is very effective to study dynamics of an atomic force microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

r :

Radius of the tip

c :

Structural damping coefficient of the microcantilever

k :

Linear stiffness

\({k}_{\mathrm{c}}\) :

Nonlinear stiffness

\({c}_{\mathrm{s}}\) :

Structural damping coefficient of the media

x :

Displacement of the tip of the microcantilever

m :

Mass of the microcantilever

\({z}_{0}\) :

Equilibrium position

t :

Time

a 1 :

Hamaker constant (repulsive)

a 2 :

Hamaker constant (attractive)

f :

External force amplitude

\(\omega \) :

Angular frequency

\({x}^{1}\) :

Cantilever displacement dimensionless

\({x}^{2}\) :

Cantilever velocity dimensionless

\(h\) :

Integration step for Runge–Kutta method

\({x}_{0}^{1}\) :

Initial condition for displacement dimensionless

\({x}_{0}^{2}\) :

Initial condition for velocity dimensionless

References

  1. Pena, B., Adbel-Hafiz, M., Cavasin, M., Mestroni, L., Sbaizero, O.: Atomic force microscopy (afm) applications in arrhythmogenic cardiomyopathy. Int. J. Mol. Sci. 23(7), 3700 (2022)

    Article  Google Scholar 

  2. Kodera, N., Ando, T.: Visualization of intrinsically disordered proteins by high-speed atomic force microscopy. Curr. Opin. Struct. Biol. 72, 260–266 (2022)

    Article  Google Scholar 

  3. Wang, S., Hao, C.: Principle and application of peak force tapping mode atomic force microscope. In: International Conference on Cognitive Based Information Processing and Applications (CIPA 2021), pp. 671–679. Springer (2022)

  4. Reichelt, M., Cappella, B.: Wear volume of self-mated steel at the submicron-scale: an atomic force microscopy study. J. Tribol. 144(6) (2022)

  5. Alibakhshi, A., Dastjerdi, S., Malikan, M., Eremeyev, V.A.: Nonlinear free and forced vibrations of a dielectric elastomer-based microcantilever for atomic force microscopy. Contin. Mech. Thermodyn. 1–18 (2022)

  6. Sajjadi, M., Chahari, M., Nejat Pishkenari, H.: Imaging performance of trolling mode atomic force microscopy: investigation of effective parameters. Arch. Appl. Mech. (2022). https://doi.org/10.1007/s00419-022-02129-x

    Article  Google Scholar 

  7. Ribeiro, M.A., Balthazar, J.M., Lenz, W.B., Rocha, R.T., Tusset, A.M.: Numerical exploratory analysis of dynamics and control of an atomic force microscopy in tapping mode with fractional order. Shock Vib. (2020). https://doi.org/10.1155/2020/4048307

    Article  Google Scholar 

  8. Chandrashekar, A., Belardinelli, P., Bessa, M.A., Staufer, U., Alijani, F.: Quantifying nanoscale forces using machine learning in dynamic atomic force microscopy. Nanoscale Adv. (2022). https://doi.org/10.1039/D2NA00011C

    Article  Google Scholar 

  9. Ribeiro, M.A., Tusset, A.M., Lenz, W.B., Kirrou, I., Balthazar, J.M.: Numerical analysis of fractional dynamical behavior of atomic force microscopy. Eur. Phys. J. Spec. Top. 230(18), 3655–3661 (2021)

    Article  Google Scholar 

  10. Marzlin, K.-P., Canam, B., Agarwal, N.R.: Nonlinear atomic force microscopy: Squeezing and skewness of micromechanical oscillators inter-acting with a surface. Phys. Rev. A 105(1), 012211 (2022)

    Article  Google Scholar 

  11. Udalov, P., Popov, I., Lukin, A.: A study of the self-oscillating regime in the problem of an atomic force microscope in the contact mode. In: Advances in Nonlinear Dynamics, pp. 549–562. Springer (2022)

  12. Bahwini, T., Zhong, Y., Gu, C., Choi, K.-S.: System identi cation of biological cells by atomic force microscopy. Int. J. Interact. Des. Manuf. (IJIDeM) (2011). https://doi.org/10.1007/s12008-022-00861-w

    Article  Google Scholar 

  13. Lee, S., Howell, S., Raman, A., Reifenberger, R.: Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy: a comparison between theory and experiment. Phys. Rev. B 66(11), 115409 (2002)

    Article  Google Scholar 

  14. Rutzel, S., Lee, S.I., Raman, A.: Nonlinear dynamics of atomic force microscope probes driven in Lennard Jones potentials. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 459(2036), 1925–1948 (2003)

    Article  MATH  Google Scholar 

  15. Amer, T.S., Bek, M.A., Nael, M.S., Sirwah, M.A., Arab, A.: Stability of the dynamical motion of a damped 3DOF auto-parametric pendulum system. J. Vib. Eng. Technol. (2022). https://doi.org/10.1007/s42417-022-00489-w

    Article  Google Scholar 

  16. Abu-Shady, M., Amer, W., Abu-Nab, A.K.: Lowering critical temperature in the extended quark sigma model at finite temperature. Int. J. Theor. Phys. 52(12), 4477–4487 (2013)

    Article  MATH  Google Scholar 

  17. He, J.H., Amer, T.S., Abolila, A.F., Galal, A.A.: Stability of three degrees-of-freedom auto-parametric system. Alex. Eng. J. 61(11), 8393–8415 (2022)

    Article  Google Scholar 

  18. Abdelhfeez, S.A., Amer, T.S., Elbaz, R.F., Bek, M.A.: Studying the influence of external torques on the dynamical motion and the stability of a 3DOF dynamic system. Alex. Eng. J. 61(9), 6695–6724 (2022)

    Article  Google Scholar 

  19. El-Sabaa, F.M., Amer, T.S., Gad, H.M., Bek, M.A.: Novel asymptotic solutions for the planar dynamical motion of a double-rigid-body pendulum system near resonance. J. Vib. Eng. Technol. (2022). https://doi.org/10.1007/s42417-022-00493-0

    Article  Google Scholar 

  20. Moiseev, N.N.: Asymptotic Methods of Nonlinear Mechanics. Nauka, Moscow (1981).. (in Russian)

    MATH  Google Scholar 

  21. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. John Wiley & Sons (2008)

    MATH  Google Scholar 

  22. Dankowicz, H.: Nonlinear dynamics as an essential tool for non-destructive characterization of soft nanostructures using tapping-mode atomic force microscopy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364(1849), 3505–3520 (2006)

    Article  MATH  Google Scholar 

  23. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, vol. 42. Springer (2013)

    MATH  Google Scholar 

  24. Kurin, A.F., Kurina, G.A., Novikov, V.V.: Nonlinear theory of a cyclotron-resonance maser with a Fabry-Perot resonator. Radiophys. Quantum Electron. 19(7), 742–747 (1976)

    Article  Google Scholar 

  25. Kurina, G.A.: On second approximation of averaging method in theory of electronic masers. Izvestiya vysshikh uchebnykh zavedenij. Radio zika 19(7), 1054–1059 (1976)

    Google Scholar 

  26. Kurina, G., Balthazar, J., Tusset, A.: Using di erent approximations of averaging method in theory of micro electromechanical systems (mems). In: Vibration Engineering and Technology of Machinery, pp. 333–342. Springer (2021)

  27. Zhang, W.-M., Meng, G., Zhou, J.-B., Chen, J.-Y.: Nonlinear dynamics and chaos of microcantilever-based tm-afms with squeeze lm damping e ects. Sensors 9(5), 3854–3874 (2009)

    Article  Google Scholar 

  28. Tusset, A.M., Balthazar, J.M., Jose de Lima, J., Rocha, R.T., Janzen, F.C., Yamaguchi, P.S.: On an optimal control applied in atomic force microscopy (AFM) including fractional-order. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 58165, p. V004T09A003 (2017). American Society of Mechanical Engineers

  29. Dingwell, J.B.: Lyapunov exponents. In: Akay, M. (ed.) Wiley Encyclopedia of Biomedical Engineering. John Wiley & Sons Inc, USA (2006)

    Google Scholar 

  30. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining lyapunov exponents from a time series. Phys. D 16(3), 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was financially supported by the Brazilian agencies CAPES and the Brazilian Council for Scientific and Technological Development, CNPq,

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio A. Ribeiro.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, M.A., Kurina, G.A., Tusset, A.M. et al. Nonlinear numerical analysis and averaging method applied atomic force microscopy with viscoelastic term. Arch Appl Mech 92, 3817–3827 (2022). https://doi.org/10.1007/s00419-022-02264-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02264-5

Keywords

Navigation