Skip to main content
Log in

Fracture mechanical analysis of open cell ceramic foams under multi-axial mechanical loading

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Ceramic foams made by replica techniques contain sharp edged cavities, which are potential crack initiators. This paper presents an approach to analyse such structures with respect to their fracture mechanical properties. A fundamental domain of an open cell Kelvin foam is used to model the geometry including the cavities and to generate a finite element model of the structure. Sub-models containing crack tip elements are used to resolve the local stress fields at the vicinity of the sharp-edged cavities. The interaction integral is used to compute the local stress intensity factors under multi-axial loading. Using a homogenization approach, a criterion for brittle failure based on the effective stress state is presented. The failure criteria can be extended to account for the anisotropic behaviour of the foam structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Schwartzwalder, K.: Method of making porous ceramic articles, US patent 3,090,094 (1963)

  2. Colombo, P., Hellmann, J.R.: Ceramic foams from preceramic polymers. Mater. Res. Innov. 6(5–6), 260–272 (2002). doi:10.1007/s10019-002-0209-z

    Article  Google Scholar 

  3. Twigg, M., Richardson, J.: Theory and applications of ceramic foam catalysts. Chem. Eng. Res. Des. 80(2), 183–189 (2002). doi:10.1205/026387602753501906

    Article  Google Scholar 

  4. Gibson, L.J., Ashby, M.F.: Cellular Solids. Cambridge Solid State Science Series. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  5. Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. Int. J. Solids Struct. 45(7–8), 1845–1875 (2008)

    Article  MATH  Google Scholar 

  6. Kraynik, A.M., Reinelt, D.A., van Swol, F.: Structure of random monodispersed foam. Phys. Rev. E 67, 0314031/1–0314031/4 (2003). doi:10.1103/PhysRevE67.031403

    Article  Google Scholar 

  7. Brakke, K.A.: The surface evolver. Exp. Math. 1(2), 141–165 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Storm, J., Abendroth, M., Zhang, D., Kuna, M.: Geometry dependent effective elastic properties of open-cell foams based on Kelvin cell models. Adv. Eng. Mater. 15(12), 1292–1298 (2013)

    Article  Google Scholar 

  9. Thomson, W.: On the division of space with minimum partitional area. Philos. Mag. 24(151), 503 (1887)

    Article  MATH  Google Scholar 

  10. Mills, N., Gilchrist, A.: High strain extension of open-cell foams. J. Eng. Mater. Technol. 122(1), 67–73 (1999). doi:10.1115/1.482767

    Article  Google Scholar 

  11. Dement’ev, A., Tarakanov, O.: Effect of cellular structure on the mechanical properties of plastic foams. Polym. Mech. 6(4), 519–525 (1970)

    Article  Google Scholar 

  12. Dement’ev, A., Tarakanov, O.: Model analysis of the cellular structure of plastic foams of the polyurethane type. Polym. Mech. 6(5), 744–749 (1970)

    Article  Google Scholar 

  13. Gong, L., Kyriakides, S., Triantafyllidis, S.: On the stability of Kelvin cell foams under compressive loads. J. Mech. Phys. Solids 53(4), 771–794 (2005)

    Article  MATH  Google Scholar 

  14. Zhu, H., Knott, J., Mills, N.: Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells. J. Mech. Phys. Solids 45, 319–343 (1997)

    Article  Google Scholar 

  15. Warren, W., Kraynik, A.: Linear elastic behavior of a low-density kelvin foam with open cells. ASME J. Appl. Mech. 64, 787–793 (1997)

    Article  MATH  Google Scholar 

  16. Deshapande, V., Fleck, N.: Isotropic constitutive models for metallic foams. J. Mech. Phys. Solids 48, 1253–1283 (2000)

    Article  Google Scholar 

  17. Bigoni, D., Piccolroaz, A.: Yield criteria for quasibrittle and frictional materials. Int. J. Solids Struct. 41(11), 2855–2878 (2004), . http://www.sciencedirect.com/science/article/pii/S0020768303007273

  18. Altenbach, H., Bolchoun, A., Kolupaev, V.: Phenomenological yield and failure criteria. In: Altenbach, H., Öchsner, A. (eds.) Plasticity of Pressure-Sensitive Materials, Engineering Materials, pp. 49–152. Springer, Berlin (2014). doi:10.1007/978-3-642-40945-5_2

    Chapter  Google Scholar 

  19. Skoge, M., Donev, A., Stillinger, F., Torquato, S.: Packing hard spheres in high dimensional Euclidean spaces. Phys. Rev. E 74, 041127 (2006)

    Article  MathSciNet  Google Scholar 

  20. Rycroft, C.: Voro++: a three dimensional voronoi cell library in C++. Chaos 19, 041111 (2009)

    Article  Google Scholar 

  21. Systèmes, D.: Abaqus 6.12 Theory Manual. Dassault Systèmes Simulia Corp., Providence (2012)

    Google Scholar 

  22. Munz, D., Fett, T.: Ceramics: Mechanical Properties, Failure Behaviour, Materials Selection, vol. 36. Springer Science & Business Media, Berlin (1999)

    Google Scholar 

  23. Suresh, S., Shih, C., Morrone, A., O’Dowd, N.: Mixed-mode fracture toughness of ceramic materials. J. Am. Ceram. Soc. 73(5), 1257–1267 (1990)

    Article  Google Scholar 

  24. Rice, J.R.: A path independent integral and the approximate analysis of strain concentration by notches and cracks. ASME J. Appl. Mech. 35(2), 379–386 (1968)

    Article  Google Scholar 

  25. Kuna, M.: Finite Elements in Fracture Mechanics. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by the German Research Foundation (DFG) within the collaborative research centre SFB 920.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Settgast.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Settgast, C., Abendroth, M. & Kuna, M. Fracture mechanical analysis of open cell ceramic foams under multi-axial mechanical loading. Arch Appl Mech 86, 335–349 (2016). https://doi.org/10.1007/s00419-015-1107-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-1107-3

Keywords

Navigation