Skip to main content

Advertisement

Log in

Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the feasibility, safety, and biocompatibility of intravitreal injection of human mesenchymal stem cells (MSCs) in immunocompetent pigmented rabbits.

Materials and methods

Thirty-two pigmented rabbits (24 females, 8 males; Chinchilla-New Zealand White) were divided into 8 groups of 4 animals. Commercially prepared human MSCs were injected (0.05 ml) into the post-lens vitreous of the right eyes. Groups 1 and 4 received isotonic medium (Ringer lactate-based), groups 2, 5, 7, and 8 received a low dose of 15 × 106 cells/ml. Groups 3 and 6 received a high dose of 30 × 106 cells/ml. Clinical signs were evaluated and scored before MSCs injection and weekly for 2 or 6 weeks. Animals were sacrificed at 2 or 6 weeks after injection. Eyes, liver, spleen, and gonads were assessed by histology and by fluorescent in situ hybridization to evaluate survival and extraocular migration of MSCs.

Results

There were no relevant clinical findings between control and MSC-injected rabbit eyes at any time point. There were also no relevant histological findings between control and MSC-injected rabbits related to ocular, liver, spleen, or gonad tissues modifications. MSCs survived intravitreally for at least 2 weeks after injection. Extraocular migration of MSCs was not detected.

Conclusions

MSCs are safe and well-tolerated when administered intravitreally at a dose of 15 × 106 cells/ml in pigmented rabbits. These findings enable future research to explore the intravitreal use of commercially prepared allogenic human MSCs in clinical trials of retinal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mariotti SP (2010) Global data on visual impairments 2010. World Health Organization, http://www.who.int/blindness/GLOBALDATAFINALforweb.pdf, pp. 17. Accessed Jul 2016

  2. Hayreh SS, Jonas JB, Zimmerman MB (2007) Nonarteritic anterior ischemic optic neuropathy and tobacco smoking. Ophthalmology 114:804–809. https://doi.org/10.1016/j.ophtha.2006.07.062

    Article  PubMed  Google Scholar 

  3. Hayreh SS, Zimmerman MB (2007) Optic disc edema in non-arteritic anterior ischemic optic neuropathy. Graefes Arch Clin Exp Ophthalmol 245:1107–1121. https://doi.org/10.1007/s00417-006-0494-0

    Article  PubMed  Google Scholar 

  4. Kupersmith MJ, Frohman L, Sanderson M, Jacobs J, Hirschfeld J, Ku C, Warren FA (1997) Aspirin reduces the incidence of second eye NAION: a retrospective study. J Neuroophthalmol 17:250–253

    Article  CAS  PubMed  Google Scholar 

  5. Beck RW, Hayreh SS, Podhajsky PA, Tan ES, Moke PS (1997) Aspirin therapy in nonarteritic anterior ischemic optic neuropathy. Am J Ophthalmol 123:212–217

    Article  CAS  PubMed  Google Scholar 

  6. Group IONDTR (2000) Ischemic optic neuropathy decompression trial: twenty-four-month update. Arch Ophthalmol 118:793–798

    Article  Google Scholar 

  7. Hayreh SS, Zimmerman MB (2008) Non-arteritic anterior ischemic optic neuropathy: role of systemic corticosteroid therapy. Graefes Arch Clin Exp Ophthalmol 246:1029–1046. https://doi.org/10.1007/s00417-008-0805-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Beck RW (2000) Does Levodopa improve visual function in NAION? Ophthalmology 107: 1431-1434; discusson 1435-1438

  9. Bernstein SL, Mehrabyan Z, Guo Y, Moianie N (2007) Estrogen is not neuroprotective in a rodent model of optic nerve stroke. Mol Vis 13:1920–1925

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Modarres M, Falavarjani KG, Nazari H, Sanjari MS, Aghamohammadi F, Homaii M, Samiy N (2011) Intravitreal erythropoietin injection for the treatment of non-arteritic anterior ischaemic optic neuropathy. Br J Ophthalmol 95:992–995. https://doi.org/10.1136/bjo.2010.191627

    Article  PubMed  Google Scholar 

  11. Wilhelm B, Ludtke H, Wilhelm H, Group BS (2006) Efficacy and tolerability of 0.2% brimonidine tartrate for the treatment of acute non-arteritic anterior ischemic optic neuropathy (NAION): a 3-month, double-masked, randomised, placebo-controlled trial. Graefes Arch Clin Exp Ophthalmol 244:551–558. https://doi.org/10.1007/s00417-005-0102-8

    Article  Google Scholar 

  12. Pece A, Querques G, Quinto A, Isola V (2010) Intravitreal ranibizumab injection for nonarteritic ischemic optic neuropathy. J Ocul Pharmacol Ther 26:523–527. https://doi.org/10.1089/jop.2010.0053

    Article  CAS  PubMed  Google Scholar 

  13. Lamba DA, Karl MO, Reh TA (2009) Strategies for retinal repair: cell replacement and regeneration. Prog Brain Res 175:23–31. https://doi.org/10.1016/S0079-6123(09)17502-7

    Article  CAS  PubMed  Google Scholar 

  14. Abdallah BM, Kassem M (2008) Human mesenchymal stem cells: from basic biology to clinical applications. Gene Ther 15:109–116. https://doi.org/10.1038/sj.gt.3303067

    Article  CAS  PubMed  Google Scholar 

  15. Phinney DG, Isakova I (2005) Plasticity and therapeutic potential of mesenchymal stem cells in the nervous system. Curr Pharm Des 11:1255–1265

    Article  CAS  PubMed  Google Scholar 

  16. Bull ND, Martin KR (2009) Using stem cells to mend the retina in ocular disease. Regen Med 4:855–864. https://doi.org/10.2217/rme.09.59

    Article  PubMed  Google Scholar 

  17. Parekkadan B, Milwid JM (2010) Mesenchymal stem cells as therapeutics. Annu Rev Biomed Eng 12:87–117. https://doi.org/10.1146/annurev-bioeng-070909-105309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu W, Xu GX (2011) Mesenchymal stem cells for retinal diseases. Int J Ophthalmol 4:413–421. https://doi.org/10.3980/j.issn.2222-3959.2011.04.19

    PubMed  PubMed Central  Google Scholar 

  19. McLaren A (2001) Ethical and social considerations of stem cell research. Nature 414:129–131. https://doi.org/10.1038/35102194

    Article  CAS  PubMed  Google Scholar 

  20. Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110:3499–3506. https://doi.org/10.1182/blood-2007-02-069716

    Article  CAS  PubMed  Google Scholar 

  21. Vega A, Martin-Ferrero MA, Del Canto F, Alberca M, Garcia V, Munar A, Orozco L, Soler R, Fuertes JJ, Huguet M, Sanchez A, Garcia-Sancho J (2015) Treatment of knee osteoarthritis with Allogeneic bone marrow Mesenchymal stem cells: a randomized controlled trial. Transplantation 99:1681–1690. https://doi.org/10.1097/TP.0000000000000678

    Article  CAS  PubMed  Google Scholar 

  22. Seo JH, Cho SR (2012) Neurorestoration induced by mesenchymal stem cells: potential therapeutic mechanisms for clinical trials. Yonsei Med J 53:1059–1067. https://doi.org/10.3349/ymj.2012.53.6.1059

    Article  PubMed  PubMed Central  Google Scholar 

  23. Labouyrie E, Dubus P, Groppi A, Mahon FX, Ferrer J, Parrens M, Reiffers J, de Mascarel A, Merlio JP (1999) Expression of neurotrophins and their receptors in human bone marrow. Am J Pathol 154:405–415. https://doi.org/10.1016/S0002-9440(10)65287-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lin N, Hu K, Chen S, Xie S, Tang Z, Lin J, Xu R (2009) Nerve growth factor-mediated paracrine regulation of hepatic stellate cells by multipotent mesenchymal stromal cells. Life Sci 85:291–295. https://doi.org/10.1016/j.lfs.2009.06.007

    Article  CAS  PubMed  Google Scholar 

  25. Li N, Li XR, Yuan JQ (2009) Effects of bone-marrow mesenchymal stem cells transplanted into vitreous cavity of rat injured by ischemia/reperfusion. Graefes Arch Clin Exp Ophthalmol 247:503–514. https://doi.org/10.1007/s00417-008-1009-y

    Article  PubMed  Google Scholar 

  26. Levkovitch-Verbin H, Sadan O, Vander S, Rosner M, Barhum Y, Melamed E, Offen D, Melamed S (2010) Intravitreal injections of neurotrophic factors secreting mesenchymal stem cells are neuroprotective in rat eyes following optic nerve transection. Invest Ophthalmol Vis Sci 51:6394–6400. https://doi.org/10.1167/iovs.09-4310

    Article  PubMed  Google Scholar 

  27. Kaplan HJ, Chiang CW, Chen J, Song SK (2010) Vitreous volume of the mouse measured by quantitative high-resolution MRI. Invest Ophthalmol Vis Sci 51:4414–4414

    Google Scholar 

  28. Hackett R (1991) Eye irritation. In: Marzulli F, Maibach H (eds) Advances in modern toxicology: Dermatoxicology. Hemisphere Publishing Corporation, Washington, DC, pp 749–815

    Google Scholar 

  29. Makki JS (2016) Diagnostic implication and clinical relevance of ancillary techniques in clinical pathology practice. Clin Med Insights Pathol 9:5–11. https://doi.org/10.4137/CPath.S32784

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ramirez BE, Sanchez A, Herreras JM, Fernandez I, Garcia-Sancho J, Nieto-Miguel T, Calonge M (2015) Stem cell therapy for corneal epithelium regeneration following good manufacturing and clinical procedures. Biomed Res Int 2015:408495. https://doi.org/10.1155/2015/408495

    Article  PubMed  PubMed Central  Google Scholar 

  31. Del Amo EM, Urtti A (2015) Rabbit as an animal model for intravitreal pharmacokinetics: clinical predictability and quality of the published data. Exp Eye Res 137:111–124. https://doi.org/10.1016/j.exer.2015.05.003

    Article  PubMed  Google Scholar 

  32. Bernstein SL, Johnson MA, Miller NR (2011) Nonarteritic anterior ischemic optic neuropathy (NAION) and its experimental models. Prog Retin Eye Res 30:167–187. https://doi.org/10.1016/j.preteyeres.2011.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  33. Griffin G, Clark JM, Zurlo J, Ritskes-Hoitinga M (2014) Scientific uses of animals: harm-benefit analysis and complementary approaches to implementing the three Rs. Rev Sci Tech 33:265–272

    Article  CAS  PubMed  Google Scholar 

  34. Siqueira RC, Messias A, Voltarelli JC, Scott IU, Jorge R (2011) Intravitreal injection of autologous bone marrow-derived mononuclear cells for hereditary retinal dystrophy: a phase I trial. Retina 31:1207–1214. https://doi.org/10.1097/IAE.0b013e3181f9c242

    Article  PubMed  Google Scholar 

  35. Jonas JB, Witzens-Harig M, Arseniev L, Ho AD (2008) Intravitreal autologous bone marrow-derived mononuclear cell transplantation: a feasibility report. Acta Ophthalmol 86:225–226. https://doi.org/10.1111/j.1600-0420.2007.00987.x

    Article  PubMed  Google Scholar 

  36. Lee JW, Park H, Choi JH, Lee HJ, Moon SW, Kang JH, Kim YG (2016) Short-term changes of intraocular pressure and ocular perfusion pressure after intravitreal injection of bevacizumab or ranibizumab. BMC Ophthalmol 16:69. https://doi.org/10.1186/s12886-016-0255-8

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ge J, Guo L, Wang S, Zhang Y, Cai T, Zhao RC, Wu Y (2014) The size of mesenchymal stem cells is a significant cause of vascular obstructions and stroke. Stem Cell Rev 10:295–303. https://doi.org/10.1007/s12015-013-9492-x

    Article  CAS  PubMed  Google Scholar 

  38. Nishihara H (1989) Studies on the ultrastructure of the inner limiting membrane of the retina. I. Surface replication study on the inner limiting membrane of the retina. Nippon Ganka Gakkai Zasshi 93:429–438

    CAS  PubMed  Google Scholar 

  39. Shen J, Durairaj C, Lin T, Liu Y, Burke J (2014) Ocular pharmacokinetics of intravitreally administered brimonidine and dexamethasone in animal models with and without blood-retinal barrier breakdown. Invest Ophthalmol Vis Sci 55:1056–1066. https://doi.org/10.1167/iovs.13-13650

    Article  CAS  PubMed  Google Scholar 

  40. Zhang C, Guo Y, Slater BJ, Miller NR, Bernstein SL (2010) Axonal degeneration, regeneration and ganglion cell death in a rodent model of anterior ischemic optic neuropathy (rAION). Exp Eye Res 91:286–292. https://doi.org/10.1016/j.exer.2010.05.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Consejería de Educación de la Junta de Castilla y León (grant number VA118U14); and the Centro en Red de Medicina Regenerativa y Terapia Celular de la Junta de Castilla y León, Spain. The FISH technique was performed by the Cytogenetics Oncology Unit (University of Salamanca, Spain) following the protocol provided by the manufacturer. I Fernandez-Bueno, GK Srivastava and S Tabera-Bartolomé were supported by RETICS (RD12/0034/0001), Instituto de Salud Carlos III, Spain; Centro en Red de Medicina Regenerativa y Terapia Celular de la Junta de Castilla y Leon, Spain; and Red de Terapia Celular (RD12/0019/0036), Instituto de Salud Carlos III, Spain, respectively. Sonia Labrador Velandia and María L Alonso-Alonso were supported by the Consejería de Educación de la Junta de Castilla y León and the Fondo Social Europeo. This study was presented in part at The Association for Research in Vision and Ophthalmology (ARVO) Annual Meeting 2015, and at the European College of Veterinary Ophthalmologists (ECVO) Annual Scientific Meeting 2015.

Funding

This work was supported by grants from the Consejería de Educación de la Junta de Castilla y León (grant number VA118U14); and the Centro en Red de Medicina Regenerativa y Terapia Celular de la Junta de Castilla y León, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Fernandez-Bueno.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this manuscript.

Statement on the welfare of animals

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted in agreement with European (Council Directive 2010/63/UE) and Spanish regulations (RD 53/2013).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labrador Velandia, S., Di Lauro, S., Alonso-Alonso, M.L. et al. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefes Arch Clin Exp Ophthalmol 256, 125–134 (2018). https://doi.org/10.1007/s00417-017-3842-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-017-3842-3

Keywords

Navigation