Skip to main content

Advertisement

Log in

Follow-up infarct volume on fluid attenuated inversion recovery (FLAIR) imaging in distal medium vessel occlusions: the role of cerebral blood volume index

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

Distal medium vessel occlusions (DMVOs) contribute substantially to the incidence of acute ischemic strokes (AIS) and pose distinct challenges in clinical management and prognosis. Neuroimaging techniques, such as Fluid Attenuation Inversion Recovery (FLAIR) imaging and cerebral blood volume (CBV) index derived from perfusion imaging, have significantly improved our ability to assess the impact of strokes and predict their outcomes. The primary objective of this study was to investigate relationship between follow-up infarct volume (FIV) as assessed by FLAIR imaging in patients with DMVOs.

Methods

This prospectively collected, retrospective reviewed cohort study included patients from two comprehensive stroke centers within the Johns Hopkins Medical Enterprise, spanning August 2018–October 2022. The cohort consisted of adults with AIS attributable to DMVO. Detailed imaging analyses were conducted, encompassing non-contrast CT, CT angiography (CTA), CT perfusion (CTP), and FLAIR imaging. Univariable and multivariable linear regression models were employed to assess the association between different factors and FIV.

Results

The study included 79 patients with DMVO stroke with a median age of 69 years (IQR, 62–77 years), and 57% (n = 45) were female. There was a negative correlation between the CBV index and FIV in a univariable linear regression analysis (Beta =  – 16; 95% CI,  – 23 to  – 8.3; p < 0.001) and a multivariable linear regression model (Beta =  – 9.1 per 0.1 change; 95% CI,  – 15 to  – 2.7; p = 0.006). Diabetes was independently associated with larger FIV (Beta = 46; 95% CI, 16 to 75; p = 0.003). Additionally, a higher baseline ASPECTS was associated with lower FIV (Beta =  – 30; 95% CI,  – 41 to  – 20; p < 0.001).

Conclusion

Our findings underscore the CBV index as an independent association with FIV in DMVOs, which highlights the critical role of collateral circulation in determining stroke outcomes in this patient population. In addition, our study confirms a negative association of ASPECTS with FLAIR FIV and identifies diabetes as independent factor associated with larger FIV. These insights pave the way for further large-scale, prospective studies to corroborate these findings, thereby refining the strategies for stroke prognostication and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ospel JM, Goyal M (2021) A review of endovascular treatment for medium vessel occlusion stroke. J Neurointerv Surg 13(7):623–630. https://doi.org/10.1136/neurintsurg-2021-017321

    Article  PubMed  Google Scholar 

  2. Saver JL, Chapot R, Agid R et al (2020) Thrombectomy for distal, medium vessel occlusions: a consensus statement on present knowledge and promising directions. Stroke 51(9):2872–2884. https://doi.org/10.1161/STROKEAHA.120.028956

    Article  PubMed  Google Scholar 

  3. van Everdingen KJ, van der Grond J, Kappelle LJ, Ramos LM, Mali WP (1998) Diffusion-weighted magnetic resonance imaging in acute stroke. Stroke 29(9):1783–1790. https://doi.org/10.1161/01.str.29.9.1783

    Article  PubMed  Google Scholar 

  4. Van der Worp HP et al (2001) Reproducibility of measurements of cerebral infarct volume on CT scans. Stroke. https://doi.org/10.1161/01.str.32.2.424

    Article  PubMed  Google Scholar 

  5. Thijs VN, Lansberg MG, Beaulieu C, Marks MP, Moseley ME, Albers GW (2000) Is early ischemic lesion volume on diffusion-weighted imaging an independent predictor of stroke outcome? A multivariable analysis. Stroke 31(11):2597–2602. https://doi.org/10.1161/01.str.31.11.2597

    Article  CAS  PubMed  Google Scholar 

  6. Saunders DE, Clifton AG, Brown MM (1995) Measurement of infarct size using mri predicts prognosis in middle cerebral artery infarction. Stroke 26(12):2272–2276. https://doi.org/10.1161/01.STR.26.12.2272

    Article  CAS  PubMed  Google Scholar 

  7. Correlation of perfusion- and diffusion-weighted MRI with NIHSS score in acute (<6.5 hour) ischemic stroke - PubMed. Accessed 15 Jan 2024. https://pubmed.ncbi.nlm.nih.gov/9566364/

  8. Farr TD, Wegener S (2010) Use of magnetic resonance imaging to predict outcome after stroke: a review of experimental and clinical evidence. J Cereb Blood Flow Metab 30(4):703–717. https://doi.org/10.1038/jcbfm.2010.5

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schiemanck SK, Kwakkel G, Post MWM, Prevo AJH (2006) Predictive value of ischemic lesion volume assessed with magnetic resonance imaging for neurological deficits and functional outcome poststroke: a critical review of the literature. Neurorehabil Neural Repair 20(4):492–502. https://doi.org/10.1177/1545968306289298

    Article  CAS  PubMed  Google Scholar 

  10. Ricci PE, Burdette JH, Elster AD, Reboussin DM (1999) A comparison of fast spin-echo, fluid-attenuated inversion-recovery, and diffusion-weighted MR imaging in the first 10 days after cerebral infarction. AJNR Am J Neuroradiol 20(8):1535–1542

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Artzi M, Aizenstein O, Jonas-Kimchi T, Myers V, Hallevi H, Ben BD (2013) FLAIR lesion segmentation: application in patients with brain tumors and acute ischemic stroke. Eur J Radiol 82(9):1512–1518. https://doi.org/10.1016/j.ejrad.2013.05.029

    Article  PubMed  Google Scholar 

  12. Yedavalli V, Koneru M, Hamam O et al (2023) Pretreatment CTP collateral parameters predict good outcomes in successfully recanalized middle cerebral artery distal medium vessel occlusions. Clin Neuroradiol. https://doi.org/10.1007/s00062-023-01371-2

    Article  PubMed  Google Scholar 

  13. Arenillas JF, Cortijo E, García-Bermejo P et al (2018) Relative cerebral blood volume is associated with collateral status and infarct growth in stroke patients in SWIFT PRIME. J Cereb Blood Flow Metab 38(10):1839–1847. https://doi.org/10.1177/0271678X17740293

    Article  PubMed  Google Scholar 

  14. Imaoka Y, Shindo S, Miura M, Terasaki T, Mukasa A, Todaka T (2023) Hypoperfusion intensity ratio and CBV index as predictive parameters to identify underlying intracranial atherosclerotic stenosis in endovascular thrombectomy. J Neuroradiol 50(4):424–430. https://doi.org/10.1016/j.neurad.2022.10.005

    Article  PubMed  Google Scholar 

  15. Cheng-Ching E, Frontera JA, Man S et al (2015) Degree of collaterals and not time is the determining factor of core infarct volume within 6 hours of stroke onset. AJNR Am J Neuroradiol 36(7):1272–1276. https://doi.org/10.3174/ajnr.A4274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hakimelahi R, Vachha BA, Copen WA et al (2014) Time and diffusion lesion size in major anterior circulation ischemic strokes. Stroke 45(10):2936–2941. https://doi.org/10.1161/STROKEAHA.114.005644

    Article  CAS  PubMed  Google Scholar 

  17. von Elm E, Altman DG, Egger M et al (2007) The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. PLoS Med 4(10):e296. https://doi.org/10.1371/journal.pmed.0040296

    Article  Google Scholar 

  18. Cuschieri S (2019) The STROBE guidelines. Saudi J Anaesth 13(Suppl 1):S31–S34. https://doi.org/10.4103/sja.SJA_543_18

    Article  PubMed  PubMed Central  Google Scholar 

  19. Koneru M, Hoseinyazdi M, Wang R et al (2023) Pretreatment parameters associated with hemorrhagic transformation among successfully recanalized medium vessel occlusions. J Neurol. https://doi.org/10.1007/s00415-023-12149-4

    Article  PubMed  Google Scholar 

  20. Souza LCS, Yoo AJ, Chaudhry ZA et al (2012) Malignant CTA collateral profile is highly specific for large admission DWI infarct core and poor outcome in acute stroke. AJNR Am J Neuroradiol 33(7):1331–1336. https://doi.org/10.3174/ajnr.A2985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Winkelmeier L et al (2023) Hypoperfusion intensity ratio is correlated with the risk of parenchymal hematoma after endovascular stroke treatment. Stroke. https://doi.org/10.1161/STROKEAHA.122.040540

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jiang Y, Han J, Spencer P et al (2021) Diabetes mellitus: a common comorbidity increasing hemorrhagic transformation after tPA thrombolytic therapy for ischemic stroke. Brain Hemorrhages 2(3):116–123. https://doi.org/10.1016/j.hest.2020.11.004

    Article  CAS  Google Scholar 

  23. Broderick JP et al (1995) Hyperglycemia and hemorrhagic transformation of cerebral infarcts. Stroke. https://doi.org/10.1161/01.STR.26.3.484

    Article  PubMed  Google Scholar 

  24. Lau LH et al (2019) Prevalence of diabetes and its effects on stroke outcomes: a meta-analysis and literature review. J Diabetes Investig. https://doi.org/10.1111/jdi.12932

    Article  PubMed  Google Scholar 

  25. Hafez S et al (2016) Matrix metalloprotease 3 exacerbates hemorrhagic transformation and worsens functional outcomes in hyperglycemic stroke. Stroke. https://doi.org/10.1161/STROKEAHA.115.011258

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gliem M et al (2015) Hyperglycemia and PPARγ antagonistically influence macrophage polarization and infarct healing after ischemic stroke. Stroke. https://doi.org/10.1161/STROKEAHA.115.010557

    Article  PubMed  Google Scholar 

  27. Blood brain barrier disruption in diabetic stroke related to unfavorable outcome - PubMed. Accessed 15 Feb 2024. https://pubmed.ncbi.nlm.nih.gov/26986824/

  28. Hoffmann A et al (2018) Early blood–brain barrier disruption in ischemic stroke initiates multifocally around capillaries/venules. Stroke. https://doi.org/10.1161/STROKEAHA.118.020927

    Article  PubMed  Google Scholar 

  29. Tasker RC, Acerini CL (2014) Cerebral edema in children with diabetic ketoacidosis: vasogenic rather than cellular? Pediatr Diabetes 15(4):261–270. https://doi.org/10.1111/pedi.12153

    Article  CAS  PubMed  Google Scholar 

  30. Venditti L, Chassin O, Ancelet C et al (2021) Pre-procedural predictive factors of symptomatic intracranial hemorrhage after thrombectomy in stroke. J Neurol 268(5):1867–1875. https://doi.org/10.1007/s00415-020-10364-x

    Article  PubMed  Google Scholar 

  31. Demeestere J, Garcia-Esperon C, Garcia-Bermejo P et al (2017) Evaluation of hyperacute infarct volume using ASPECTS and brain CT perfusion core volume. Neurology 88(24):2248–2253. https://doi.org/10.1212/WNL.0000000000004028

    Article  PubMed  PubMed Central  Google Scholar 

  32. Olive-Gadea M, Martins N, Boned S et al (2019) Baseline ASPECTS and e-ASPECTS Correlation with infarct volume and functional outcome in patients undergoing mechanical thrombectomy. J Neuroimaging 29(2):198–202. https://doi.org/10.1111/jon.12564

    Article  PubMed  Google Scholar 

  33. Muir KW, Buchan A, von Kummer R, Rother J, Baron JC (2006) Imaging of acute stroke. Lancet Neurol 5(9):755–768. https://doi.org/10.1016/S1474-4422(06)70545-2

    Article  PubMed  Google Scholar 

  34. Broocks G, McDonough R, Meyer L et al (2021) Reversible ischemic lesion hypodensity in acute stroke CT following endovascular reperfusion. Neurology 97(11):e1075–e1084. https://doi.org/10.1212/WNL.0000000000012484

    Article  CAS  PubMed  Google Scholar 

  35. Jiang Q, Wang H, Ge J et al (2022) Mechanical thrombectomy versus medical care alone in large ischemic core: an up-to-date meta-analysis. Interv Neuroradiol 28(1):104–114. https://doi.org/10.1177/15910199211016258

    Article  PubMed  Google Scholar 

  36. Powers WJ, Rabinstein AA, Ackerson T et al (2019) Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American heart association/American stroke association. Stroke 50(12):e344–e418. https://doi.org/10.1161/STR.0000000000000211

    Article  PubMed  Google Scholar 

  37. Turc G, Bhogal P, Fischer U et al (2023) European stroke organisation (ESO) - European society for minimally invasive neurological therapy (ESMINT) guidelines on mechanical thrombectomy in acute ischemic stroke. J Neurointerv Surg 15(8):e8. https://doi.org/10.1136/neurintsurg-2018-014569

    Article  PubMed  Google Scholar 

  38. Saber H, Narayanan S, Palla M et al (2018) Mechanical thrombectomy for acute ischemic stroke with occlusion of the M2 segment of the middle cerebral artery: a meta-analysis. J Neurointerv Surg 10(7):620–624. https://doi.org/10.1136/neurintsurg-2017-013515

    Article  PubMed  Google Scholar 

  39. Nogueira RG, Zaidat OO, Castonguay AC et al (2016) Rescue thrombectomy in large vessel occlusion strokes leads to better outcomes than intravenous thrombolysis alone: a “Real World” applicability of the recent trials. Interv Neurol 5(3–4):101–110. https://doi.org/10.1159/000445809

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sarraj A, Hassan A, Savitz SI et al (2018) Endovascular thrombectomy for mild strokes: how low should we go? Stroke 49(10):2398–2405. https://doi.org/10.1161/STROKEAHA.118.022114

    Article  PubMed  PubMed Central  Google Scholar 

  41. Strambo D, Bartolini B, Beaud V et al (2020) Thrombectomy and thrombolysis of isolated posterior cerebral artery occlusion: cognitive, visual, and disability outcomes. Stroke 51(1):254–261. https://doi.org/10.1161/STROKEAHA.119.026907

    Article  PubMed  Google Scholar 

  42. Tourdias T, Renou P, Sibon I et al (2011) Final cerebral infarct volume is predictable by MR imaging at 1 week. Am J Neuroradiol 32(2):352–358. https://doi.org/10.3174/ajnr.A2271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Thomalla G, Gerloff C (2010) We are on the clock: MRI as a surrogate marker of lesion age in acute ischemic stroke. Stroke 41(2):197–198. https://doi.org/10.1161/STROKEAHA.109.570085

    Article  PubMed  Google Scholar 

  44. FLAIR Vascular Hyperintensities as a Surrogate of Collaterals in Acute Stroke: DWI Matters - PubMed. Accessed 14 Feb 2024. https://pubmed.ncbi.nlm.nih.gov/36521962/

  45. Wu O, Schwamm LH, Sorensen AG (2011) Imaging stroke patients with unclear onset times. Neuroimaging Clin N Am 21(2):327–344. https://doi.org/10.1016/j.nic.2011.02.008

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhang X, Huang P, Zhang R (2022) Evaluation and prediction of post-stroke cerebral edema based on neuroimaging. Front Neurol 12:763018. https://doi.org/10.3389/fneur.2021.763018

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Yedavalli.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salim, H., Lakhani, D.A., Balar, A. et al. Follow-up infarct volume on fluid attenuated inversion recovery (FLAIR) imaging in distal medium vessel occlusions: the role of cerebral blood volume index. J Neurol (2024). https://doi.org/10.1007/s00415-024-12279-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00415-024-12279-3

Keywords

Navigation