Skip to main content

Advertisement

Log in

Forensic age prediction and age classification for critical age thresholds via 3.0T magnetic resonance imaging of the knee in the Chinese Han population

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Objectives

To assess the performance of knee MRI for forensic age prediction and classification for 12-, 14-, 16-, and 18-year thresholds.

Methods

The ossification stages of distal femoral epiphyses and proximal tibial epiphyses were assessed using an integrated staging system by Schmeling et al. and Kellinghaus et al. for knee 3.0T MRI with T1-weighted turbo spin-echo (T1-TSE) in sagittal orientation among 852 Chinese Han individuals (483 males and 369 females) aged 7–30 years. Regression models for age prediction were constructed and their performances were evaluated based on mean absolute deviation (MAD) values. In addition, the performances of age classification were assessed using receiver operating characteristic (ROC) analyses.

Results

The intra- and inter-observer agreement levels were very good (κ > 0.80). The complete fusion of those two types of epiphyses took place before 18.0 years in our study participants. The minimum MAD values were 2.51 years (distal femur) and 2.69 years (proximal tibia) in males, and 2.75 years (distal femur) and 2.87 years (proximal tibia) in females. The specificity values of constructed prediction models were all above 90% for the 12-, 14-, and 16-year thresholds, compared to the 74.8–84.6% for the 18-year threshold. Better performances of age prediction and classification were observed in males by distal femoral epiphyses.

Conclusions

Ossification stages via 3.0T MRI of the knee with T1-TSE sequence using an integrated staging system could be a reliable noninvasive method for age prediction or for age classification for 12-, 14-, and 16-year thresholds, especially in males by distal femoral epiphyses. However, assessments based on the full bony fusion of the distal femoral epiphysis and proximal tibial epiphysis seemed not reliable for age classification for the 18-year threshold in the Chinese Han population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sykes L, Bhayat A, Bernitz H (2017) The effects of the refugee crisis on age estimation analysis over the past 10 years: a 16-country survey. Int J Environ Res Public Health 14(6):630–638. https://doi.org/10.3390/ijerph14060630

    Article  PubMed Central  Google Scholar 

  2. Sironi E, Gittelson S, Bozza S, Taroni F (2021) Minor or adult? Introducing decision analysis in forensic age estimation. Sci Justice 61(1):47–60. https://doi.org/10.1016/j.scijus.2020.09.004

    Article  PubMed  Google Scholar 

  3. Black S, Aggrawal A, Payne-James J (2010) Age estimation in the living: the practitioner’s guide. Wiley-Blackwell, Chichester

    Book  Google Scholar 

  4. Schmeling A, Grundmann C, Fuhrmann A, Kaatsch HJ, Knell B, Ramsthaler F, Reisinger W, Riepert T, Ritz-Timme S, Rosing FW, Rotzscher K, Geserick G (2008) Criteria for age estimation in living individuals. Int J Legal Med 122(6):457–460. https://doi.org/10.1007/s00414-008-0254-2

    Article  CAS  PubMed  Google Scholar 

  5. Schulz R, Muhler M, Reisinger W, Schmidt S, Schmeling A (2008) Radiographic staging of ossification of the medial clavicular epiphysis. Int J Legal Med 122(1):55–58. https://doi.org/10.1007/s00414-007-0210-6

    Article  PubMed  Google Scholar 

  6. Berlin L (2014) Shared decision-making: is it time to obtain informed consent before radiologic examinations utilizing ionizing radiation? Legal and ethical implications. J Am Coll Radiol 11(3):246–251. https://doi.org/10.1016/j.jacr.2013.10.006

    Article  PubMed  Google Scholar 

  7. Nievelstein RA, Frush DP (2012) Should we obtain informed consent for examinations that expose patients to radiation? AJR Am J Roentgenol 199(3):664–669. https://doi.org/10.2214/AJR.11.8319

    Article  PubMed  Google Scholar 

  8. Ritz-Timme S, Cattaneo C, Collins MJ, Waite ER, Schutz HW, Kaatsch HJ, Borrman HI (2000) Age estimation: the state of the art in relation to the specific demands of forensic practise. Int J Legal Med 113(3):129–136. https://doi.org/10.1007/s004140050283

    Article  CAS  PubMed  Google Scholar 

  9. Vucic S, de Vries E, Eilers PH, Willemsen SP, Kuijpers MA, Prahl-Andersen B, Jaddoe VW, Hofman A, Wolvius EB, Ongkosuwito EM (2014) Secular trend of dental development in Dutch children. Am J Phys Anthropol 155(1):91–98. https://doi.org/10.1002/ajpa.22556

    Article  PubMed  Google Scholar 

  10. Mora S, Boechat MI, Pietka E, Huang HK, Gilsanz V (2001) Skeletal age determinations in children of European and African descent: applicability of the Greulich and Pyle standards. Pediatr Res 50(5):624–628. https://doi.org/10.1203/00006450-200111000-00015

    Article  CAS  PubMed  Google Scholar 

  11. De Tobel J, Bauwens J, Parmentier GIL, Franco A, Pauwels NS, Verstraete KL, Thevissen PW (2020) Magnetic resonance imaging for forensic age estimation in living children and young adults: a systematic review. Pediatr Radiol 50(12):1691–1708. https://doi.org/10.1007/s00247-020-04709-x

    Article  PubMed  Google Scholar 

  12. Ekizoglu O, Er A, Bozdag M, Basa CD, Kacmaz IE, Moghaddam N, Grabherr S (2021) Forensic age estimation via magnetic resonance imaging of knee in the Turkish population: use of T1-TSE sequence. Int J Legal Med 135(2):631–637. https://doi.org/10.1007/s00414-020-02402-0

    Article  PubMed  Google Scholar 

  13. Uygun B, Kaya K, Kose S, Ekizoglu O, Hilal A (2021) Applicability of magnetic resonance imaging of the knee in forensic age estimation. Am J Forensic Med Pathol 42(2):147–154. https://doi.org/10.1097/PAF.0000000000000634

    Article  PubMed  Google Scholar 

  14. Daghighi MH, Pourisa M, Javanpour-Heravi H, Ghojazadeh M, Mirza-Aghazadeh-Attari M, Daghighi S, Jabbari KH, Zarrintan A (2021) Application of knee MRI in forensic age estimation: a retrospective cohort. Radiography (Lond) 27(1):108–114. https://doi.org/10.1016/j.radi.2020.06.019

    Article  CAS  Google Scholar 

  15. Auf Der Mauer M, Säring D, Stanczus B, Herrmann J, Groth M, Jopp-van Well E (2019) A 2-year follow-up MRI study for the evaluation of an age estimation method based on knee bone development. Int J Legal Med 133(1):205–215. https://doi.org/10.1007/s00414-018-1826-4

    Article  PubMed  Google Scholar 

  16. El-Din EAA, Mostafa HES, Tantawy EF, El-Shafei DA (2019) Magnetic resonance imaging of the proximal tibial epiphysis: could it be helpful in forensic age estimation? Forensic Sci Med Pathol 15(3):352–361. https://doi.org/10.1007/s12024-019-00116-3

    Article  PubMed  Google Scholar 

  17. Vieth V, Schulz R, Heindel W, Pfeiffer H, Buerke B, Schmeling A, Ottow C (2018) Forensic age assessment by 3.0T MRI of the knee: proposal of a new MRI classification of ossification stages. Eur Radiol 28(8):3255–3262. https://doi.org/10.1007/s00330-017-5281-2

    Article  PubMed  Google Scholar 

  18. Ottow C, Schulz R, Pfeiffer H, Heindel W, Schmeling A, Vieth V (2017) Forensic age estimation by magnetic resonance imaging of the knee: the definite relevance in bony fusion of the distal femoral- and the proximal tibial epiphyses using closest-to-bone T1 TSE sequence. Eur Radiol 27(12):5041–5048. https://doi.org/10.1007/s00330-017-4880-2

    Article  PubMed  Google Scholar 

  19. Ekizoglu O, Hocaoglu E, Inci E, Can IO, Aksoy S, Kazimoglu C (2016) Forensic age estimation via 3-T magnetic resonance imaging of ossification of the proximal tibial and distal femoral epiphyses: Use of a T2-weighted fast spin-echo technique. Forensic Sci Int 260:101–102. https://doi.org/10.1016/j.forsciint.2015.12.006

    Article  Google Scholar 

  20. Fan F, Zhang K, Peng Z, Cui J, Hu N, Deng Z (2016) Forensic age estimation of living persons from the knee: comparison of MRI with radiographs. Forensic Sci Int 268:145–150. https://doi.org/10.1016/j.forsciint.2016.10.002

    Article  PubMed  Google Scholar 

  21. Saint-Martin P, Rérolle C, Pucheux J, Dedouit F, Telmon N (2015) Contribution of distal femur MRI to the determination of the 18-year limit in forensic age estimation. Int J Legal Med 129(3):619–620. https://doi.org/10.1007/s00414-014-1020-2

    Article  PubMed  Google Scholar 

  22. Krämer JA, Schmidt S, Jürgens K, Lentschig M, Schmeling A, Vieth V (2014) Forensic age estimation in living individuals using 3.0T MRI of the distal femur. Int J Legal Med 128(3):509–514. https://doi.org/10.1007/s00414-014-0967-3

    Article  PubMed  Google Scholar 

  23. Krämer JA, Schmidt S, Jürgens K, Lentschig M, Schmeling A, Vieth V (2014) The use of magnetic resonance imaging to examine ossification of the proximal tibial epiphysis for forensic age estimation in living individuals. Forensic Sci Med Pathol 10(3):306–313. https://doi.org/10.1007/s12024-014-9559-2

    Article  CAS  PubMed  Google Scholar 

  24. Dedouit F, Auriol J, Rousseau H, Rougé D, Crubézy E, Telmon N (2012) Age assessment by magnetic resonance imaging of the knee: a preliminary study. Forensic Sci Int 217(1-3):231–232. https://doi.org/10.1016/j.forsciint.2011.11.013

    Article  Google Scholar 

  25. Wittschieber D, Chitavishvili N, Papageorgiou I, Malich A, Mall G, Mentzel H (2021) Magnetic resonance imaging of the proximal tibial epiphysis is suitable for statements as to the question of majority: a validation study in forensic age diagnostics. Int J Legal Med. https://doi.org/10.1007/s00414-021-02766-x

  26. Alatas O, Altınsoy HB, Gurses MS, Balci A (2021) Evaluation of knee ossification on 1.5 T magnetic resonance images using the method of Vieth et al. Rechtsmedizin 31(1):50–58. https://doi.org/10.1007/s00194-020-00432-x

    Article  Google Scholar 

  27. Schmeling A, Schulz R, Reisinger W, Hler M, Wernecke K, Geserick G (2004) Studies on the time frame for ossification of the medial clavicular epiphyseal cartilage in conventional radiography. Int J Legal Med 118(1):5–8. https://doi.org/10.1007/s00414-003-0404-5

    Article  PubMed  Google Scholar 

  28. Kellinghaus M, Schulz R, Vieth V, Schmidt S, Pfeiffer H, Schmeling A (2010) Enhanced possibilities to make statements on the ossification status of the medial clavicular epiphysis using an amplified staging scheme in evaluating thin-slice CT scans. Int J Legal Med 124(4):321–325. https://doi.org/10.1007/s00414-010-0448-2

    Article  PubMed  Google Scholar 

  29. Jopp E, Schröder I, Maas R, Adam G, Püschel K (2010) Proximale Tibiaepiphyse im Magnetresonanztomogramm. Rechtsmedizin 20(6):464–468. https://doi.org/10.1007/s00194-010-0705-1

    Article  Google Scholar 

  30. Lu T, Qiu L, Ren B, Shi L, Fan F, Deng Z (2021) Forensic age estimation based on magnetic resonance imaging of the proximal humeral epiphysis in Chinese living individuals. Int J Legal Med 135(6):2437–2446. https://doi.org/10.1007/s00414-021-02653-5

    Article  PubMed  Google Scholar 

  31. Lu T, Shi L, Zhan MJ, Fan F, Peng Z, Zhang K, Deng ZH (2020) Age estimation based on magnetic resonance imaging of the ankle joint in a modern Chinese Han population. Int J Legal Med 134(5):1843–1852. https://doi.org/10.1007/s00414-020-02364-3

    Article  PubMed  Google Scholar 

  32. Martinez VN, Holler J, Widek T, Neumayer B, Ehammer T, Urschler M (2017) Forensic age estimation by morphometric analysis of the manubrium from 3D MR images. Forensic Sci Int 277:21–29. https://doi.org/10.1016/j.forsciint.2017.05.005

    Article  Google Scholar 

  33. Mauer MAD, Well EJ, Herrmann J, Groth M, Morlock MM, Maas R, Säring D (2021) Automated age estimation of young individuals based on 3D knee MRI using deep learning. Int J Legal Med 135(2):649–663. https://doi.org/10.1007/s00414-020-02465-z

    Article  PubMed  Google Scholar 

  34. Pröve P, Jopp-van Well E, Stanczus B, Morlock MM, Herrmann J, Groth M, Säring D, Auf Der Mauer M (2019) Automated segmentation of the knee for age assessment in 3D MR images using convolutional neural networks. Int J Legal Med 133(4):1191–1205. https://doi.org/10.1007/s00414-018-1953-y

    Article  PubMed  Google Scholar 

  35. Dallora AL, Berglund JS, Brogren M, Kvist O, Diaz RS, Dubbel A, Anderberg P (2019) Age assessment of youth and young adults using magnetic resonance imaging of the knee: a deep learning approach. JMIR Med Inform 7(4):e16291. https://doi.org/10.2196/16291

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ducharme JR, Collu R (1982) Pubertal development: normal, precocious and delayed. Clin Endocrinol Metab 11(1):57–87. https://doi.org/10.1016/s0300-595x(82)80038-8

    Article  CAS  PubMed  Google Scholar 

  37. Wittschieber D, Schulz R, Vieth V, Küppers M, Bajanowski T, Ramsthaler F, Püschel K, Pfeiffer H, Schmidt S, Schmeling A (2014) Influence of the examiner’s qualification and sources of error during stage determination of the medial clavicular epiphysis by means of computed tomography. Int J Legal Med 128(1):183–191. https://doi.org/10.1007/s00414-013-0932-6

    Article  PubMed  Google Scholar 

Download references

Funding

This project was supported by the Key Research and Development Program of Sichuan Province of China (Grant Number: 22ZDYF1829), the Postdoctoral Research Project of Sichuan Province (Grant Number: 2021-12), the Opening Project of Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education (Grant Number: 2021KFKT03), National Natural Science Foundation of China (Grant Number: 81971801, 81373252) and the Cooperation Project between North Sichuan Medical College and Local Government (Grant Number: 18SXHZ0172).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Cong or Zhen-Hua Deng.

Ethics declarations

Research involving human participants and/or animals

This article does not contain any studies with animals performed by any of the authors.

Ethical approval/Informed consent

All procedures performed in the study were in accordance with the ethical standards of the institutional research committee.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Table 1

(DOCX 17 kb)

Supplementary Fig. 1

Eleven regression models of ossification stage scores of distal femoral epiphysis and proximal tibial epiphysis for chronological age based on the training set in males and females, respectively. (PNG 564 kb)

High resolution image (TIF 31779 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, XD., Lu, T., Liu, GF. et al. Forensic age prediction and age classification for critical age thresholds via 3.0T magnetic resonance imaging of the knee in the Chinese Han population. Int J Legal Med 136, 841–852 (2022). https://doi.org/10.1007/s00414-022-02797-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-022-02797-y

Keywords

Navigation