Skip to main content
Log in

Chromatin loops and causality loops: the influence of RNA upon spatial nuclear architecture

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

An intrinsic and essential trait exhibited by cells is the properly coordinated and integrated regulation of an astoundingly large number of simultaneous molecular decisions and reactions to maintain biochemical homeostasis. This is especially true inside the cell nucleus, where the recognition of DNA and RNA by a vast range of nucleic acid-interacting proteins organizes gene expression patterns. However, this dynamic system is not regulated by simple “on” or “off” signals. Instead, transcription factor and RNA polymerase recruitment to DNA are influenced by the local chromatin and epigenetic environment, a gene’s relative position within the nucleus and the action of noncoding RNAs. In addition, major phase-separated structural features of the nucleus, such as nucleoli and paraspeckles, assemble in direct response to specific transcriptional activities and, in turn, influence global genomic function. Currently, the interpretation of these data is trapped in a causality dilemma reminiscent of the “chicken and the egg” paradox as it is unclear whether changes in nuclear architecture promote RNA function or vice versa. Here, we review recent advances that suggest a complex and interdependent interaction network between gene expression, chromatin topology, and noncoding RNA function. We also discuss the functional links between these essential nuclear processes from the nanoscale (gene looping) to the macroscale (sub-nuclear gene positioning and nuclear body function) and briefly highlight some of the challenges that researchers may encounter when studying these phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adriaens C, Standaert L, Barra J et al (2016) p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nat Med 22(8):861–868

    Article  CAS  PubMed  Google Scholar 

  • Ahmad Y, Boisvert FM, Gregor P et al (2009) NOPdb: nucleolar proteome database--2008 update. Nucleic Acids Res 37(Database issue):D181–D184

  • Almassalha LM, Tiwari A, Ruhoff PT et al (2017) The global relationship between chromatin physical topology, fractal structure, and Gene expression. Scientific Reports 7:41061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen JS, Lam YW, Leung AK et al (2005) Nucleolar proteome dynamics. Nature 433(7021):77–83

    Article  CAS  PubMed  Google Scholar 

  • Andersson R, Gebhard C, Miguel-Escalada I et al (2014) An atlas of active enhancers across human cell types and tissues. Nature 507(7493):455–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arner E, Daub CO, Vitting-Seerup K et al (2015) Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science 347(6225):1010–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora R, Brun CM, Azzalin CM (2012) Transcription regulates telomere dynamics in human cancer cells. RNA 18(4):684–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arun G, Diermeier S, Akerman M et al (2016) Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss. Genes Dev 30(1):34–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aymard F, Aguirrebengoa M, Guillou E et al (2017) Genome-wide mapping of long-range contacts unveils clustering of DNA double-strand breaks at damaged active genes. Nat Struct Mol Biol 24(4):353–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnhart MC, Kuich PHJL, Stellfox ME et al (2011) HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore. J Cell Biol 194(2):229–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beltran M, Yates CM, Skalska L et al (2016) The interaction of PRC2 with RNA or chromatin is mutually antagonistic. Genome Res 26(7):896–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berry J, Weber SC, Vaidya N et al (2015) RNA transcription modulates phase transition-driven nuclear body assembly. Proc Natl Acad Sci 112(38):E5237–E5245

  • Bhatt DM, Pandya-Jones A, Tong AJ et al (2012) Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell 150(2):279–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohmdorfer G, Wierzbicki AT (2015) Control of chromatin structure by long noncoding RNA. Trends Cell Biol 25(10):623–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boisvert FM, van Koningsbruggen S, Navascues J et al (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8(7):574–585

    Article  CAS  PubMed  Google Scholar 

  • Bond CS, Fox AH (2009) Paraspeckles: nuclear bodies built on long noncoding RNA. J Cell Biol 186(5):637–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boque-Sastre R, Soler M, Oliveira-Mateos C et al (2015) Head-to-head antisense transcription and R-loop formation promotes transcriptional activation. Proc Natl Acad Sci 112(18):5785–5790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bose T, Lee KK, Lu S et al (2012) Cohesin proteins promote ribosomal RNA production and protein translation in yeast and human cells. PLoS Genet 8(6):e1002749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulon S, Westman BJ, Hutten S et al (2010) The nucleolus under stress. Mol Cell 40(2):216–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Branco MR, Pombo A (2006) Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol 4(5):e138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brickner DG, Coukos R, Brickner JH (2015) INO1 transcriptional memory leads to DNA zip code-dependent interchromosomal clustering. Microb Cell 2(12):481–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bridger JM, Boyle S, Kill IR et al (2000) Re-modelling of nuclear architecture in quiescent and senescent human fibroblasts. Curr Biol 10(3):149–152

    Article  CAS  PubMed  Google Scholar 

  • Busslinger GA, Stocsits RR, van der Lelij P et al (2017) Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl. Nature 544(7651):503–507

    Article  CAS  PubMed  Google Scholar 

  • Castellano-Pozo M, Santos-Pereira JM, Rondon AG et al (2013) R loops are linked to histone H3 S10 phosphorylation and chromatin condensation. Mol Cell 52(4):583–590

    Article  CAS  PubMed  Google Scholar 

  • Caudron-Herger M, Pankert T, Seiler J et al (2015) Alu element-containing RNAs maintain nucleolar structure and function. EMBO J 34(22):2758–2774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavalli G, Misteli T (2013) Functional implications of genome topology. Nat Struct Mol Biol 20(3):290–299

    Article  CAS  PubMed  Google Scholar 

  • Chakravarty D, Sboner A, Nair SS et al (2014) The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer. Nat Commun 5:5383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chekanova JA, Abruzzi KC, Rosbash M et al (2008) Sus1, Sac3, and Thp1 mediate post-transcriptional tethering of active genes to the nuclear rim as well as to non-nascent mRNP. RNA 14(1):66–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LL, Yang L (2017) ALUternative regulation for Gene expression. Trends Cell Biol. doi:10.1016/j.tcb.2017.01.002

  • Ching RW, Ahmed K, Boutros PC et al (2013) Identifying gene locus associations with promyelocytic leukemia nuclear bodies using immuno-TRAP. J Cell Biol 201(2):325–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clemson CM, Hutchinson JN, Sara SA et al (2009) An architectural role for a nuclear non-coding RNA: NEAT1 RNA is essential for the structure of Paraspeckles. Mol Cell 33(6):717–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cloutier SC, Wang S, Ma WK et al (2016) Regulated formation of lncRNA-DNA hybrids enables faster transcriptional induction and environmental adaptation. Mol Cell 61(3):393–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Courchaine EM, Lu A, Neugebauer KM (2016) Droplet organelles? EMBO J 35(15):1603–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cremer M, von Hase J, Volm T et al (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosome Res 9(7):541–567

    Article  CAS  PubMed  Google Scholar 

  • Cremer T, Cremer C, Baumann H et al (1982) Rabl's model of the interphase chromosome arrangement tested in Chinese hamster cells by premature chromosome condensation and laser-UV-microbeam experiments. Hum Genet 60(1):46–56

    Article  CAS  PubMed  Google Scholar 

  • Cremer T, Cremer M (2010) Chromosome territories. Cold Spring Harb Perspect Biol 2(3):a003889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cremer T, Lichter P, Borden J et al (1988) Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridization using chromosome-specific library probes. Hum Genet 80(3):235–246

    Article  CAS  PubMed  Google Scholar 

  • Cutts SM, Fowler KJ, Kile BT et al (1999) Defective chromosome segregation, microtubule bundling and nuclear bridging in inner centromere protein gene (Incenp)-disrupted mice. Hum Mol Genet 8(7):1145–1155

    Article  CAS  PubMed  Google Scholar 

  • Dai C, Li W, Tjong H et al (2016) Mining 3D genome structure populations identifies major factors governing the stability of regulatory communities. Nat Commun 7:11549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Laat W, Dekker J (2012) 3C-based technologies to study the shape of the genome. Methods 58(3):189–191

    Article  PubMed  CAS  Google Scholar 

  • Denissov S, Lessard F, Mayer C et al (2011) A model for the topology of active ribosomal RNA genes. EMBO Rep 12(3):231–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derenzini M, Montanaro L, Trere D (2017) Ribosome biogenesis and cancer. Acta Histochem 119(3):190–197

  • Derenzini M, Trerè D, Pession A et al (1998) Nucleolar function and size in cancer cells. Am J Pathol 152(5):1291–1297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon JR, Selvaraj S, Yue F et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398):376–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dowen JM, Fan ZP, Hnisz D et al (2014) Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell 159(2):374–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle B, Fudenberg G, Imakaev M et al (2014) Chromatin loops as allosteric modulators of enhancer-promoter interactions. PLoS Comput Biol 10(10):e1003867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dundr M (2011) Seed and grow: a two-step model for nuclear body biogenesis. J Cell Biol 193(4):605–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dundr M, Ospina JK, Sung MH et al (2007) Actin-dependent intranuclear repositioning of an active gene locus in vivo. J Cell Biol 179(6):1095–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engreitz JM, Haines JE, Perez EM et al (2016) Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature 539(7629):452–455

    Article  CAS  PubMed  Google Scholar 

  • Espinoza CA, Allen TA, Hieb AR et al (2004) B2 RNA binds directly to RNA polymerase II to repress transcript synthesis. Nat Struct Mol Biol 11(9):822–829

    Article  CAS  PubMed  Google Scholar 

  • Faridani OR, Abdullayev I, Hagemann-Jensen M et al (2016) Single-cell sequencing of the small-RNA transcriptome. Nat Biotechnol 34(12):1264–1266

    CAS  PubMed  Google Scholar 

  • Feric M, Vaidya N, Harmon TS et al (2016) Coexisting liquid phases underlie nucleolar Subcompartments. Cell 165:1–12

    Article  CAS  Google Scholar 

  • Finlan LE, Sproul D, Thomson I et al (2008) Recruitment to the nuclear periphery can Alter expression of genes in human cells. PLoS Genet 4(3):e1000039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Finn EH, Pegoraro G, Shachar S et al (2017) Comparative analysis of 2D and 3D distance measurements to study spatial genome organization. Methods. doi:10.1016/j.ymeth.2017.01.007

  • Flyamer IM, Gassler J, Imakaev M et al (2017) Single-nucleus hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544(7648):110–114

    Article  CAS  PubMed  Google Scholar 

  • Fox AH, Lam YW, Leung AK et al (2002) Paraspeckles: a novel nuclear domain. Curr Biol 12(1):13–25

    Article  CAS  PubMed  Google Scholar 

  • Fraser P, Bickmore W (2007) Nuclear organization of the genome and the potential for gene regulation. Nature 447(7143):413–417

    Article  CAS  PubMed  Google Scholar 

  • Fudenberg G, Imakaev M, Lu C et al (2016) Formation of chromosomal domains by loop extrusion. Cell Rep 15(9):2038–2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaither TL, Merrett SL, Pun MJ et al (2014) Centromeric barrier disruption leads to mitotic defects in Schizosaccharomyces pombe. G3: Genes|Genomes|Genetics 4(4):633–642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guetg C, Lienemann P, Sirri V et al (2010) The NoRC complex mediates the heterochromatin formation and stability of silent rRNA genes and centromeric repeats. EMBO J 29(13):2135–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hacisuleyman E, Goff LA, Trapnell C et al (2014) Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat Struct Mol Biol 21(2):198–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hah N, Murakami S, Nagari A et al (2013) Enhancer transcripts mark active estrogen receptor binding sites. Genome Res 23(8):1210–1223

  • Hall LL, Carone DM, Gomez A et al (2014) Stable CoT-1 repeat RNA is abundant and associated with euchromatic interphase chromosomes. Cell 156(5):907–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hangauer MJ, Vaughn IW, McManus MT (2013) Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet 9(6):e1003569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris B, Bose T, Lee KK et al (2014) Cohesion promotes nucleolar structure and function. Mol Biol Cell 25(3):337–346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hendrickson DG, Kelley DR, Tenen D et al (2016) Widespread RNA binding by chromatin-associated proteins. Genome Biol 17(1):28

    Article  CAS  Google Scholar 

  • Hennig S, Kong G, Mannen T et al (2015) Prion-like domains in RNA binding proteins are essential for building subnuclear paraspeckles. J Cell Biol 210(4):529–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirose T, Virnicchi G, Tanigawa A et al (2014) NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies. Mol Biol Cell 25(1):169–183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hsieh C-L, Fei T, Chen Y et al (2014) Enhancer RNAs participate in androgen receptor-driven looping that selectively enhances gene activation. Proc Natl Acad Sci 111(20):7319–7324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hug CB, Grimaldi AG, Kruse K et al (2017) Chromatin architecture emerges during zygotic genome activation independent of transcription. Cell 169(2):216–228 e219

    Article  CAS  PubMed  Google Scholar 

  • Joyce EF, Erceg J, Wu CT (2016) Pairing and anti-pairing: a balancing act in the diploid genome. Curr Opin Genet Dev 37:119–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser TE, Intine RV, Dundr M (2008) De novo formation of a subnuclear body. Science 322(5908):1713–1717

    Article  CAS  PubMed  Google Scholar 

  • Kaneko S, Son J, Shen SS et al (2013) PRC2 binds active promoters and contacts nascent RNAs in embryonic stem cells. Nat Struct Mol Biol 20(11):1258–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanhere A, Viiri K, Araújo CC et al (2010) Short RNAs are transcribed from repressed Polycomb target genes and interact with Polycomb repressive complex-2. Mol Cell 38(5):675–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kar A, Willcox S, Griffith JD (2016) Transcription of telomeric DNA leads to high levels of homologous recombination and t-loops. Nucleic Acids Res 44(19):9369–9380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna N, Hu Y, Belmont AS (2014) HSP70 transgene directed motion to nuclear speckles facilitates heat shock activation. Curr Biol 24(10):1138–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YW, Lee S, Yun J et al (2015) Chromatin looping and eRNA transcription precede the transcriptional activation of gene in the β-globin locus. Biosci Rep 35(2):e00179 

  • Kumaran RI, Spector DL (2008) A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. J Cell Biol 180(1):51–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kupper K, Kolbl A, Biener D et al (2007) Radial chromatin positioning is shaped by local gene density, not by gene expression. Chromosoma 116(3):285–306

    Article  PubMed  PubMed Central  Google Scholar 

  • Larschan E, Bishop EP, Kharchenko PV et al (2011) X chromosome dosage compensation via enhanced transcriptional elongation in Drosophila. Nature 471(7336):115–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le TB, Laub MT (2016) Transcription rate and transcript length drive formation of chromosomal interaction domain boundaries. EMBO J 35(14):1582–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenstra TL, Rodriguez J, Chen H et al (2016) Transcription dynamics in living cells. Annu Rev Biophys 45:25–47

    Article  CAS  PubMed  Google Scholar 

  • Li W, Notani D, Ma Q et al (2013) Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498(7455):516–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Notani D, Rosenfeld MG (2016) Enhancers as non-coding RNA transcription units: recent insights and future perspectives. Nat Rev Genet 17(4):207–223

    Article  CAS  PubMed  Google Scholar 

  • Ling J, Baibakov B, Pi W et al (2005) The HS2 enhancer of the beta-globin locus control region initiates synthesis of non-coding, polyadenylated RNAs independent of a cis-linked globin promoter. J Mol Biol 350(5):883–896

    Article  CAS  PubMed  Google Scholar 

  • Lupiáñez DG, Kraft K, Heinrich V et al (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of Gene-enhancer interactions. Cell 161(5):1012–1025

  • Maharana S, Iyer KV, Jain N et al (2016) Chromosome intermingling—the physical basis of chromosome organization in differentiated cells. Nucleic Acids Res 44(11):5148–5160

    Article  PubMed  CAS  Google Scholar 

  • Mahy NL, Perry PE, Gilchrist S et al (2002) Spatial organization of active and inactive genes and noncoding DNA within chromosome territories. J Cell Biol 157(4):579–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manelyte L, Strohner R, Gross T et al (2014) Chromatin targeting signals, nucleosome positioning mechanism and non-coding RNA-mediated regulation of the chromatin remodeling complex NoRC. PLoS Genet 10(3):e1004157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mao YS, Sunwoo H, Zhang B et al (2011) Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nat Cell Biol 13(1):95–101

    Article  CAS  PubMed  Google Scholar 

  • Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469(7330):343–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matheson TD, Kaufman PD (2015) Grabbing the genome by the NADs. Chromosoma 125(3):361–371

  • Mayan M, Aragon L (2010) Cis-interactions between non-coding ribosomal spacers dependent on RNAP-II separate RNAP-I and RNAP-III transcription domains. Cell Cycle 9(21):4328–4337

    Article  CAS  PubMed  Google Scholar 

  • Mayer C, Schmitz KM, Li J et al (2006) Intergenic transcripts regulate the epigenetic state of rRNA genes. Mol Cell 22(3):351–361

    Article  CAS  PubMed  Google Scholar 

  • McStay B (2016) Nucleolar organizer regions: genomic 'dark matter' requiring illumination. Genes Dev 30(14):1598–1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meaburn KJ (2016) Spatial genome organization and its emerging role as a potential diagnosis tool. Front Genet 7:134

    Article  PubMed  PubMed Central  Google Scholar 

  • Meaburn KJ, Misteli T (2008) Locus-specific and activity-independent gene repositioning during early tumorigenesis. J Cell Biol 180(1):39–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meaburn KJ, Newbold RF, Bridger JM (2008) Positioning of human chromosomes in murine cell hybrids according to synteny. Chromosoma 117(6):579–591

    Article  PubMed  Google Scholar 

  • Mele M, Rinn JL (2016) "Cat's cradling" the 3D genome by the act of LncRNA transcription. Mol Cell 62(5):657–664

    Article  CAS  PubMed  Google Scholar 

  • Misteli T (2007) Beyond the sequence: cellular organization of genome function. Cell 128(4):787–800

    Article  CAS  PubMed  Google Scholar 

  • Morris KV, Chan SW, Jacobsen SE et al (2004) Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305(5688):1289–1292

    Article  CAS  PubMed  Google Scholar 

  • Necsulea A, Soumillon M, Warnefors M et al (2014) The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 505(7485):635–640

    Article  CAS  PubMed  Google Scholar 

  • Németh A, Conesa A, Santoyo-Lopez J et al (2010) Initial genomics of the human nucleolus. PLoS Genet 6(3):e1000889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nemeth A, Langst G (2011) Genome organization in and around the nucleolus. Trends Genet 27(4):149–156

    Article  CAS  PubMed  Google Scholar 

  • Nickerson JA, Krochmalnic G, Wan KM et al (1989) Chromatin architecture and nuclear RNA. Proc Natl Acad Sci 86(1):177–181

  • Nicolas E, Parisot P, Pinto-Monteiro C et al (2016) Involvement of human ribosomal proteins in nucleolar structure and p53-dependent nucleolar stress. Nat Commun 7:11390

    Article  PubMed  PubMed Central  Google Scholar 

  • Noordermeer D, Duboule D (2013) Chromatin looping and organization at developmentally regulated gene loci. Wiley Interdiscip rev dev Biol 2(5):615–630

    Article  CAS  PubMed  Google Scholar 

  • Nora EP, Lajoie BR, Schulz EG et al (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485(7398):381–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nwigwe IJ, Kim YJ, Wacker DA et al (2015) Boundary associated long noncoding RNA mediates long-range chromosomal interactions. PLoS One 10(8):e0136104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olson MO, Dundr M (2005) The moving parts of the nucleolus. Histochem Cell Biol 123(3):203–216

    Article  CAS  PubMed  Google Scholar 

  • Parada LA, McQueen PG, Munson PJ et al (2002) Conservation of relative chromosome positioning in normal and cancer cells. Curr Biol 12(19):1692–1697

    Article  CAS  PubMed  Google Scholar 

  • Pascual-Garcia P, Debo B, Aleman JR et al (2017) Metazoan nuclear pores provide a scaffold for poised genes and mediate induced enhancer-promoter contacts. Mol Cell. doi:10.1016/j.molcel.2017.02.020

  • Penny GD, Kay GF, Sheardown SA et al (1996) Requirement for Xist in X chromosome inactivation. Nature 379(6561):131–137

    Article  CAS  PubMed  Google Scholar 

  • Percharde M, Bulut-Karslioglu A, Ramalho-Santos M (2016) Hypertranscription in development, stem cells, and regeneration. Dev Cell 40(1):9–21

    Article  PubMed  CAS  Google Scholar 

  • Peterlin BM, Brogie JE, Price DH (2012) "7SK snRNA: a noncoding RNA that plays a major role in regulating eukaryotic transcription." Wiley interdisciplinary reviews. RNA 3(1):92–103

    CAS  PubMed  Google Scholar 

  • Pliss A, Fritz AJ, Stojkovic B et al (2015) Non-random patterns in the distribution of NOR-bearing chromosome territories in human fibroblasts: a network model of interactions. J Cell Physiol 230(2):427–439

    Article  CAS  PubMed  Google Scholar 

  • Politz JC, Scalzo D, Groudine M (2013) Something silent this way forms: the functional organization of the repressive nuclear compartment. Annu Rev Cell Dev Biol 29:241–270

    Article  CAS  PubMed  Google Scholar 

  • Puckelwartz MJ, Depreux FFS, McNally EM (2011) Gene expression, chromosome position and lamin A/C mutations. Nucleus 2(3):162–167

  • Pulakanti K, Pinello L, Stelloh C et al (2013) Enhancer transcribed RNAs arise from hypomethylated, Tet-occupied genomic regions. Epigenetics 8(12):1303–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quénet D, Dalal Y (2014) A long non-coding RNA is required for targeting centromeric protein a to the human centromere. Elife 3:e03254

    Article  PubMed  PubMed Central  Google Scholar 

  • Quinn JJ, Chang HY (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17(1):47–62

    Article  CAS  PubMed  Google Scholar 

  • Rahman S, Zorca CE, Traboulsi T et al (2016) Single-cell profiling reveals that eRNA accumulation at enhancer-promoter loops is not required to sustain transcription. Nucleic Acids Res 45(6):3017–3030

  • Rajapakse I, Groudine M (2011) On emerging nuclear order. J Cell Biol 192(5):711–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Randise-Hinchliff C, Brickner JH (2016) Transcription factors dynamically control the spatial organization of the yeast genome. Nucleus 7(4):369–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieder D, Ploner C, Krogsdam AM et al (2014) Co-expressed genes prepositioned in spatial neighborhoods stochastically associate with SC35 speckles and RNA polymerase II factories. Cell Mol Life Sci 71(9):1741–1759

    Article  CAS  PubMed  Google Scholar 

  • Rinn JL, Kertesz M, Wang JK et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by non-coding RNAs. Cell 129(7):1311–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rošić S, Erhardt S (2016) No longer a nuisance: long non-coding RNAs join CENP-A in epigenetic centromere regulation. Cell Mol Life Sci 73(7):1387–1398

    Article  PubMed  CAS  Google Scholar 

  • Santenard A, Ziegler-Birling C, Koch M et al (2010) Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3. Nat Cell Biol 12(9):853–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santoro R, Schmitz K-M, Sandoval J et al (2010) Intergenic transcripts originating from a subclass of ribosomal DNA repeats silence ribosomal RNA genes in trans. EMBO Rep 11(1):52–58

    Article  CAS  PubMed  Google Scholar 

  • Sanz LA, Hartono SR, Lim YW et al (2016) Prevalent, dynamic, and conserved R-loop structures associate with specific Epigenomic signatures in mammals. Mol Cell 63(1):167–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauerwald N, Zhang S, Kingsford C et al (2017) Chromosomal dynamics predicted by an elastic network model explains genome-wide accessibility and long-range couplings. Nucleic Acids Res 45(7):3663–3673

  • Savic N, Bar D, Leone S et al (2014) lncRNA maturation to initiate heterochromatin formation in the nucleolus is required for exit from pluripotency in ESCs. Cell Stem Cell 15(6):720–734

    Article  CAS  PubMed  Google Scholar 

  • Sawyer IA, Hager GL, Dundr M (2016a) Specific genomic cues regulate Cajal body assembly. RNA Biol. doi:10.1080/15476286.2016.1243648

  • Sawyer IA, Shevtsov SP, Dundr M (2016b) Spectral imaging to visualize higher-order genomic organization. Nucleus 7(3):325–338

  • Sawyer IA, Sturgill D, Sung MH et al (2016c) Cajal body function in genome organization and transcriptome diversity. BioEssays 38(12):1197–1208

  • Schor IE, Lleres D, Risso GJ et al (2012) Perturbation of chromatin structure globally affects localization and recruitment of splicing factors. PLoS One 7(11):e48084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sengupta K, Upender MB, Barenboim-Stapleton L et al (2007) Artificially introduced aneuploid chromosomes assume a conserved position in colon cancer cells. PLoS One 2(2):e199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shachar S, Voss TC, Pegoraro G et al (2015) Identification of Gene positioning factors using high-throughput imaging mapping. Cell 162(4):911–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shevtsov SP, Dundr M (2011) Nucleation of nuclear bodies by RNA. Nat Cell Biol 13(2):167–173

    Article  CAS  PubMed  Google Scholar 

  • Shin Y, Berry J, Pannucci N et al (2017) Spatiotemporal control of intracellular phase transitions using light-activated optoDroplets. Cell 168(1):159–171

  • Shiue CN, Berkson RG, Wright AP (2009) C-Myc induces changes in higher order rDNA structure on stimulation of quiescent cells. Oncogene 28(16):1833–1842

    Article  CAS  PubMed  Google Scholar 

  • Simon MD, Pinter SF, Fang R et al (2013) High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature 504(7480):465–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skourti-Stathaki K, Kamieniarz-Gdula K, Proudfoot NJ (2014) R-loops induce repressive chromatin marks over mammalian gene terminators. Nature 516(7531):436–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solinhac R, Mompart F, Martin P et al (2011) Transcriptomic and nuclear architecture of immune cells after LPS activation. Chromosoma 120(5):501–520

    Article  CAS  PubMed  Google Scholar 

  • Solovei I, Wang AS, Thanisch K et al (2013) LBR and lamin a/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152(3):584–598

    Article  CAS  PubMed  Google Scholar 

  • Souquere S, Beauclair G, Harper F et al (2010) Highly ordered spatial Organization of the Structural Long Noncoding NEAT1 RNAs within Paraspeckle nuclear bodies. Mol Biol Cell 21(22):4020–4027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sridhar B, Rivas-Astroza M, Nguyen TC et al (2017) Systematic mapping of RNA-chromatin interactions in vivo. Curr Biol 27(4):602–609

    Article  CAS  PubMed  Google Scholar 

  • Stevens, TJ, Lando D, Basu S et al (2017) 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 544(7648):59–64

  • Stirling PC, Chan YA, Minaker SW et al (2012) R-loop-mediated genome instability in mRNA cleavage and polyadenylation mutants. Genes Dev 26(2):163–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan-Wong SM, Wijayatilake HD, Proudfoot NJ (2009) Gene loops function to maintain transcriptional memory through interaction with the nuclear pore complex. Genes Dev 23(22):2610–2624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Therizols P, Illingworth RS, Courilleau C et al (2014) Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells. Science 346(6214):1238–1242

    Article  CAS  PubMed  Google Scholar 

  • Tomita S, Abdalla MO, Fujiwara S et al (2015) A cluster of noncoding RNAs activates the ESR1 locus during breast cancer adaptation. Nat Commun 6:6966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torabi K, Wangsa D, Ponsa I et al (2017) Transcription-dependent radial distribution of TCF7L2 regulated genes in chromosome territories. Chromosoma:1–13

  • Tripathi V, Song DY, Zong X et al (2012) SRSF1 regulates the assembly of pre-mRNA processing factors in nuclear speckles. Mol Biol Cell 23(18):3694–3706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulianov SV, Khrameeva EE, Gavrilov AA et al (2015) Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains. Genome Res 26(1):70–84

  • van de Werken HJG, de Haan JC, Feodorova Y et al (2017) Small chromosomal regions position themselves autonomously according to their chromatin class. Genome Res. doi:10.1101/gr.213751.116

  • Vance KW, Ponting CP (2014) Transcriptional regulatory functions of nuclear long noncoding RNAs. Trends Genet 30(8):348–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilborg A, Passarelli MC, Yario TA et al (2015) Widespread inducible transcription downstream of human genes. Mol Cell 59(3):449–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volpi EV, Chevret E, Jones T et al (2000) Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 113(Pt 9):1565–1576

    CAS  PubMed  Google Scholar 

  • Wachtler F, Hopman AH, Wiegant J et al (1986) On the position of nucleolus organizer regions (NORs) in interphase nuclei. Studies with a new, non-autoradiographic in situ hybridization method. Exp Cell Res 167(1):227–240

    Article  CAS  PubMed  Google Scholar 

  • Wang KC, Yang YW, Liu B et al (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472(7341):120–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Sawyer IA, Sung MH et al (2016) Cajal bodies are linked to genome conformation. Nat Commun 7:10966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wehner S, Dorrich AK, Ciba P et al (2014) pRNA: NoRC-associated RNA of rRNA operons. RNA Biol 11(1):3–9

    Article  CAS  PubMed  Google Scholar 

  • Weinberg MS, Morris KV (2016) Transcriptional gene silencing in humans. Nucleic Acids Res 44(14):6505–6517

    Article  PubMed  PubMed Central  Google Scholar 

  • Werner MS, Ruthenburg AJ (2015) Nuclear fractionation reveals thousands of chromatin-tethered noncoding RNAs adjacent to active genes. Cell Rep 12(7):1089–1098

    Article  CAS  PubMed  Google Scholar 

  • West JA, Davis CP, Sunwoo H et al (2014) The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol Cell 55(5):791–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West JA, Mito M, Kurosaka S et al (2016) Structural, super-resolution microscopy analysis of paraspeckle nuclear body organization. J Cell Biol 214(7):817–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wijchers PJ, Krijger PH, Geeven G et al (2016) Cause and consequence of tethering a SubTAD to different nuclear compartments. Mol Cell 61(3):461–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson I, Lettice LA, Hill RE et al (2016) Shh and ZRS enhancer colocalisation is specific to the zone of polarising activity. Development 143(16):2994–3001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woods SJ, Hannan KM, Pearson RB et al (2015) The nucleolus as a fundamental regulator of the p53 response and a new target for cancer therapy. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1849(7):821–829

    Article  CAS  Google Scholar 

  • Woringer M, Darzacq X, Izeddin I (2014) Geometry of the nucleus: a perspective on gene expression regulation. Curr Opin Chem Biol 20:112–119

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki T, Hirose T (2015) The building process of the functional paraspeckle with long non-coding RNAs. Front Biosci (Elite) 7:1–41

  • Yang F, Deng X, Ma W et al (2015) The lncRNA Firre anchors the inactive X chromosome to the nucleolus by binding CTCF and maintains H3K27me3 methylation. Genome Biol 16:52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang Y, Su Z, Song X et al (2016) Enhancer RNA-driven looping enhances the transcription of the long noncoding RNA DHRS4-AS1, a controller of the DHRS4 gene cluster. Scientific Reports 6:20961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yap KL, Li S, Munoz-Cabello AM et al (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 38(5):662–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu S, Lemos B (2016) A portrait of ribosomal DNA contacts with Hi-C reveals 5S and 45S rDNA anchoring points in the folded human genome. Genome Biol Evol 8(11):3545–3558

  • Yu X, Li Z, Zheng H et al (2017) NEAT1: a novel cancer-related long non-coding RNA. Cell Prolif 50(2):e12329–e12n/a

    Article  CAS  Google Scholar 

  • Zentner GE, Saiakhova A, Manaenkov P et al (2011) Integrative genomic analysis of human ribosomal DNA. Nucleic Acids res 39(12):4949–4960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang LF, Huynh KD, Lee JT (2007) Perinucleolar targeting of the inactive X during S phase: evidence for a role in the maintenance of silencing. Cell 129(4):693–706

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Brangwynne CP (2015) Nuclear bodies: the emerging biophysics of nucleoplasmic phases. Curr Opin Cell Biol 34:23–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zullo JM, Demarco IA, Pique-Regi R et al (2012) DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina. Cell 149(7):1474–1487

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Rosalind Franklin University of Medicine and Science for their support of our work. We are also thankful to Dr. Karen Meaburn for her constructive comments during the writing of this review and Dr. Sergei Shevtsov for technical support during confocal microscopy. Finally, we sincerely apologize to those authors whose works on this large and fascinating topic were omitted from this manuscript due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Dundr.

Ethics declarations

Funding

This work was supported by NIH grant R01 GM 090156 from NIGMS (awarded to MD).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawyer, I.A., Dundr, M. Chromatin loops and causality loops: the influence of RNA upon spatial nuclear architecture. Chromosoma 126, 541–557 (2017). https://doi.org/10.1007/s00412-017-0632-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-017-0632-y

Keywords

Navigation