Skip to main content
Log in

Mineral-melt vanadium oxybarometry for primitive arc magmas: effect of hydrous melt composition on fO2 estimates

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

If primitive arc magmas are primarily oxidized or if they acquire their oxidizing character during crustal evolution remains debated. Mineral-melt V partitioning is extremely redox sensitive and has the potential to resolve this debate, but critical low-temperature, hydrous experimental partitioning data are limited. We present new experimental V partitioning data for olivine-melt, spinel-melt, and clinopyroxene-melt based on the ≤ 1200 °C, hydrous basalt phase equilibrium experiments of Pichavant et al. (Geochim Cosmochim Acta 66:2193–2209, 2002) and Pichavant and Macdonald (Contrib Mineral Petrol 154:535–558, 2007). Combined with published experimental data, we use our olivine-melt V partitioning coefficients to show that—contrary to previous conclusions—hydrous melt composition, i.e. melt H2O concentration in addition to the concentration of other melt components, affects V partitioning and thus calculated fO2, systematically overestimating fO2 for olivine-melt equilibrated at high melt H2O concentration. False absolute fO2 values and false oxidation or reduction trends may be inferred. Based on these findings, we have calibrated a set of new olivine-melt oxybarometers applicable to hydrous arc magmas partially crystallized at ~ 1025–1350 °C. In a case study on a high-Mg basalt from St. Vincent, Lesser Antilles, we show that olivine-melt V oxybarometry records oxidizing near-liquidus conditions (~ QFM + 1.8) and possibly limited oxidation (~ 0.3 log units) during intermittent crustal magma storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data collected and used for this study are provided in the supplementary tables.

References

  • Allen RW, Collier JS, Stewart AG, Henstock T, Goes S, Rietbrock A, Wilkinson JJ (2019) The role of arc migration in the development of the Lesser Antilles: a new tectonic model for the Cenozoic evolution of the eastern Caribbean. Geology 47:891–895

    Article  Google Scholar 

  • Balcone-Boissard H, Boudon G, d’Augustin T, Erdmann S, Deloule E, Vicente J (2023) Architecture of the Lesser Antilles arc illustrated by melt inclusions. J Petrol. https://doi.org/10.1093/petrology/egad020

    Article  Google Scholar 

  • Behrens H (2020) Water speciation in oxide glasses and melts. Chem Geol 558:119850

    Article  CAS  Google Scholar 

  • Blundy J, Wood B (2003) Partitioning of trace elements between crystals and melts. Earth Planet Sci Lett 210:383–397

    Article  CAS  Google Scholar 

  • Blundy J, Melekhova E, Ziberna L, Humphreys MCS, Cerantola V, Brooker RA, McCammon CA, Pichavant M, Ulmer P (2020) Effect of redox on Fe–Mg–Mn exchange between olivine and melt and an oxybarometer for basalts. Contrib Mineral Petrol 175:103

    Article  CAS  Google Scholar 

  • Bouvier A-S, Métrich N, Deloule E (2008) Slab-derived fluids in magma sources of St. Vincent (Lesser Antilles Arc): volatile and light element imprints. J Petrol 49:1427–1448

    Article  CAS  Google Scholar 

  • Bouvier A-S, Deloule E, Métrich N (2010) Fluid inputs to magma sources of St. Vincent and Grenada (Lesser Antilles): new insights from trace elements in olivine-hosted melt inclusions. J Petrol 51:1597–1615

    Article  CAS  Google Scholar 

  • Bouvier A-S, Rose-Koga EF, Nichols ARL, Le Lay C (2022) Melt inclusion formation during olivine recrystallization: evidence from stable isotopes. Earth Plan Sci Lett 592:117638

    Article  CAS  Google Scholar 

  • Brounce MN, Kelley KA, Cottrell E (2014) Variations in Fe3+/Fe of Mariana arc basalts and mantle wedge fO2. J Petrol 55:2513–2536

    Article  CAS  Google Scholar 

  • Bucholz CE, Kelemen PB (2019) Oxygen fugacity at the base of the Talkeetna arc. Alaska Contrib Mineral Petrol 174:79

    Article  Google Scholar 

  • Canil D (1997) Vanadium partitioning and the oxidation state of Archaean komatite magmas. Nature 389:842–845

    Article  CAS  Google Scholar 

  • Canil D (2002) Vanadium in peridotites, mantle redox and tectonic environments: archean to present. Earth Plan Sci Lett 195:75–90

    Article  CAS  Google Scholar 

  • Canil D, Fedortchouk Y (2001) Olivine–liquid partitioning of vanadium and other trace elements, with applications to modern and ancient picrites. Can Mineral 39:319–330

    Article  CAS  Google Scholar 

  • Carmichael ISE (1991) The redox states of basic and silicic magmas: a reflection of their source regions? Contrib Mineral Petrol 106:129–141

    Article  CAS  Google Scholar 

  • Cottrrell E, Kelley KA (2011) The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle. Earth Plan Sci Lett 305:270–282

    Article  CAS  Google Scholar 

  • Davis FA, Humayun M, Hirschmann MM, Cooper RS (2013) Experimentally determined mineral/melt partitioning of first-row transition elements (FRTE) during partial melting of peridotite at 3 GPa. Geochim Cosmochim Acta 104:232–260

    Article  CAS  Google Scholar 

  • Devine JD, Gardner JE, Brack HP, Layne GD, Rutherford MJ (1995) Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses. Am Mineral 80:319–328

    Article  CAS  Google Scholar 

  • Di Muro A, Villemant B, Montagnac G, Scaillet B, Reynard B (2006) Quantification of water content and speciation in natural silicic glasses (phonolite, dacite, rhyolite) by confocal microRaman spectrometry. Geochim Cosmochim Acta 70:2868–2884

    Article  Google Scholar 

  • Evain M, Galvé A, Charvis Ph, Laigle M, Kopp H, Bécelc A, Weinzierl W, Hirn A, Flueh ER, Gallart J, The Lesser Antilles Thales scientific party (2013) Structure of the Lesser Antilles subduction forearc and backstop from 3D seismic refraction tomography. Tectonophysics 603:55–67

  • Gaetani GA, Kent AJR, Grove TL, Hutcheon ID, Stolper EM (2003) Mineral/melt partitioning of trace elements during hydrous peridotite partial melting. Contrib Mineral Petrol 145:391–405

    Article  CAS  Google Scholar 

  • Gaillard F, Scaillet B, Pichavant M, Iacono-Marziano G (2015) The redox geodynamics linking basalts and their mantle sources through space and time. Chem Geol 418:217–233

    Article  CAS  Google Scholar 

  • Gavrilenko M, Herzberg C, Vidito C, Carr MJ, Tenner T, Ozerov A (2016) A calcium-in-olivine geohygrometer and its application to subduction zone magmatism. J Petrol 57:1811–1832

    Article  CAS  Google Scholar 

  • Green TH, Blundy JD, Adam J, Yaxley GM (2000) SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–7.5 GPa and 1080–1200 °C. Lithos 53:165–187

    Article  CAS  Google Scholar 

  • Grocke SB, Cottrell E, de Silva S, Kelley KA (2016) The role of crustal and eruptive processes versus source variations in controlling the oxidation state of iron in Central Andean magmas. Earth Plan Sci Lett 440:92–104

    Article  CAS  Google Scholar 

  • Grove TL, Till CB, Krawczynski MJ (2012) The role of H2O in subduction zone magmatism. Annu Rev Earth Planet Sci 2012(40):413–439

    Article  Google Scholar 

  • Heath E, Macdonald R, Belkin H, Hawkesworth C, Sigurdsson H (1998) Magmagenesis at Soufrière Volcano, St. Vincent, Lesser Antilles Arc. J Petrol 39:1721–1764

    Article  CAS  Google Scholar 

  • Holycross M, Cottrell E (2022) Experimental quantification of vanadium partitioning between eclogitic minerals (garnet, clinopyroxene, rutile) and silicate melt as a function of temperature and oxygen fugacity. Contrib Mineral Petrol 177:21

    Article  CAS  Google Scholar 

  • Hughes EC, Buse B, Kearns SL, Blundy JD, Kilgour G, Mader HM (2019) Low analytical totals in EPMA of hydrous silicate glass due to sub-surface charging: obtaining accurate volatiles by difference. Chem Geol 505:48–56

    Article  CAS  Google Scholar 

  • Karner JM, Papike JJ, Sutton SR, Shearer CK, Burger P, McKay G, Le L (2008) Valence state partitioning of V between pyroxene-melt: effects of pyroxene and melt composition, and direct determination of V valence states by XANES. Application to Martian basalt QUE 94201 composition. Meteorit Planet Sci 8:1275–1285

    Article  Google Scholar 

  • Kelley KA, Cottrell E (2012) The influence of magmatic differentiation on the oxidation state of Fe in a basaltic arc magma. Earth Plan Sci Lett 329–330:109–121

    Article  Google Scholar 

  • Laubier M, Grove TL, Langmuir CH (2014) Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: an experimental and laser ICP-MS study with application to the oxidation state of mantle source regions. Earth Plan Sci Lett 392:265–278

    Article  CAS  Google Scholar 

  • Lee C-TA, Leeman WP, Canil D, Li ZXA (2005) Similar V/Sc systematics in MORB and arc basalts: implications for the oxygen fugacities of their mantle source regions. J Petrol 46:2313–2336

    Article  CAS  Google Scholar 

  • Macdonald R, Hawkesworth CJ, Heath E (2000) The Lesser Antilles volcanic chain: a study in arc magmatism. Earth Sci Rev 49:1–76

    Article  CAS  Google Scholar 

  • Mallmann G, O’Neill HSC (2009) The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). J Petrol 50:1765–1794

    Article  CAS  Google Scholar 

  • Mallmann G, O’Neill HSC (2013) Calibration of an empirical thermometer and oxybarometer based on the partitioning of Sc, Y and V between olivine and silicate melt. J Petrol 54:933–949

    Article  CAS  Google Scholar 

  • McDade P, Blundy JD, Wood BJ (2003) Trace element partitioning between mantle wedge peridotire and hydrous MgO-rich melt. Am Mineral 88:1825–1831

    Article  CAS  Google Scholar 

  • Melekhova E, Blundy J, Robertson R, Humphreys MC (2015) Experimental evidence for polybaric differentiation of primitive arc basalt beneath St. Vincent, Lesser Antilles. J Petrol 56:161–192

    Article  CAS  Google Scholar 

  • Mysen BO, Virgo D, Seifert FA (1982) The structure of silicate melts: implications for chemical and physical properties of natural magma. Rev Geophys Space Phys 20:353–383

    Article  CAS  Google Scholar 

  • O’Neill HSC (1987) Quartz-fayalite-iron and quartz-fayalite-magnetite equilibria and the free-energy of formation of fayalite (Fe2SiO4) and magnetite (Fe3O4). Am Mineral 72:67–75

    Google Scholar 

  • Papike JJ, Burger PV, Bell AS, Le L, Shearer CK, Sutton SR, Jones J, Newville M (2013) Developing vanadium valence state oxybarometers (spinel-melt, olivine-melt, spinel-olivine) and V/(Cr plus Al) partitioning (spinel-melt) for martian olivine-phyric basalts. Am Mineral 98:2193–2196

    Article  CAS  Google Scholar 

  • Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. J Anal Spectrom 26:2508–2518

    Article  CAS  Google Scholar 

  • Petrus JA, Chew DM, Leybourne MI, Kamber BS (2017) A new approach to laser-ablation inductively-coupled-plasma mass-spectrometry (LA-ICP-MS) using the flexible map interrogation tool “Monocle.” Chem Geol 463:76–93

    Article  CAS  Google Scholar 

  • Pichavant M, Macdonald R (2007) Crystallization of primitive basaltic magmas at crustal pressures and genesis of the calc-alkaline igneous suite: experimental evidence from St. Vincent, Lesser Antilles Arc. Contrib Mineral Petrol 154:535–558

    Article  CAS  Google Scholar 

  • Pichavant M, Mysen BO, Macdonald R (2002) Source and H2O content of high-MgO magmas in island arc settings: an experimental study of a primitive calc-alkaline basalt from St. Vincent, Lesser Antilles Arc. Geochim Cosmochim Acta 66:2193–2209

    Article  CAS  Google Scholar 

  • Prytulak J, Sossi PA, Halliday AN, Plank T, Savage PS, Woodhead JD (2017) Stable vanadium isotopes as a redox proxy in magmatic systems? Geochem Perspect Lett 3:75–84

    Article  Google Scholar 

  • Pu X, Lange R, Moore G (2017) A comparison of olivine-melt thermometers based on DMg and DNi: the effects of melt composition, temperature, and pressure with applications to MORBs and hydrous arc basalts. Am Mineral 102:750–765

    Article  Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61–120

    Article  CAS  Google Scholar 

  • Righter K, Sutton SR, Newville M, Lei L, Schwandt CS, Uchida H, Lavina B, Downs RT (2006) An experimental study of the oxidation state of vanadium in spinel and basaltic melt with implications for the origin of planetary basalt. Am Mineral 91:1643–1656

    Article  CAS  Google Scholar 

  • Righter K, Herd CDK, Boujibar A (2020) Redox processes in early Earth accretion and in terrestrial bodies. Elements 16:161–166

    Article  CAS  Google Scholar 

  • Shishkina T, Portnyagin M, Botcharnikov RE, Almeev RR, Simonyan AV, Garbe-Schönberg D, Schuth S, Oeser M, Holtz F (2018) Experimental calibration and implications of olivine-melt vanadium oxybarometry for hydrous basaltic arc magmas. Am Mineral 103:369–383

    Article  Google Scholar 

  • Stamper CC, Melekhova E, Blundy JD, Arculus RJ, Humphreys MCS, Brooker RA (2014) Oxidised phase relations of a primitive basalt from Grenada, Lesser Antilles. Contrib Mineral Petrol 167:954

    Article  Google Scholar 

  • Tang M, Lee C-TA, Costin G, Höfer HE (2019) Recycling reduced iron at the base of magmatic orogens. Earth Plan Sci Lett 528:115827

    Article  CAS  Google Scholar 

  • Tang M, Erdman M, Eldridge G, Lee C-TA (2018) The redox “filter” beneath magmatic orogens and the formation of continental crust. Sci Adv 4:eaar4444

    Article  Google Scholar 

  • Tollan PME, Bindeman I, Blundy JD (2012) Cumulate xenoliths from St. Vincent, Lesser Antilles Island Arc: a window into upper crustal differentiation of mantle-derived basalts. Contrib Mineral Petrol 163:189–208

    Article  CAS  Google Scholar 

  • Toplis MJ, Corgne A (2002) An experimental study of element partitioning between magnetite, clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium. Contrib Mineral Petrol 144:22–37

    Article  CAS  Google Scholar 

  • Ulmer P, Kaegi R, Müntener O (2018) Experimentally derived intermediate to silica-rich arc magmas by fractional and equilibrium crystallization at 1.0 GPa: an evaluation of phase relationships, compositions, liquid lines of descent and oxygen fugacity. J Petrol 59:11–58

    Article  CAS  Google Scholar 

  • Van Achterbergh E, Ryan CG, Griffin WL (2000) GLITTER on-line interactive data reduction for the LA-ICPMS microprobe. Macquarie Research Ltd, Sydney

    Google Scholar 

  • Vanucci R, Tiepolo M, Defant MJ, Kepezhinskas P (2007) The metasomatic record in the shallow peridotite mantle beneath Grenada (Lesser Antilles arc). Lithos 99:25–44

    Article  Google Scholar 

  • Wang J, Xiong X, Takahashi E, Zhang L, Li L, Liu X (2019) Oxidation state of arc mantle revealed by partitioning of V, Sc and Ti between mantle minerals and basaltic melts. J Geophys Res Solid Earth 124:4617–4638

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is part of the project “Tracking the differentiation of redox-sensitive elements in fluid-rich to fluid-poor magmas” of Erdmann et al. supported by LabEx VOLTAIRE (ANR-10-LABX-100-01). The analytical facilities at ISTO that were used are also supported by LabEx VOLTAIRE (ANR-10-LABX-100-01) and by EquipEx PLANEX (ANR-11-EQPX-0036). Patricia Benoist and Ida Di Carlo are thanked for their assistance and guidance in SEM imaging and electron microprobe analyses. Fai Tcha and Henrique da Mota of IRAMAT are thanked for their support of ISTO’s LA-ICP-MS laboratory. Emmanuel Le Trong kindly helped with regression-related questions. The Laboratoire Magmas et Volcans is thanked for hosting SE for a six-month stay in 2023. We sincerely thank M. Holycross, an anonymous reviewer, and O. Müntener for their insightful and constructive comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception. Samples were provided by MP. Data collection and analysis were performed by SE. Data interpretation involved all authors. The draft of the manuscript was written by SE, while MP and FG commented on all versions of the manuscript.

Corresponding author

Correspondence to Saskia Erdmann.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Othmar Müntener.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4317 KB)

Supplementary file2 (XLSX 69 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdmann, S., Pichavant, M. & Gaillard, F. Mineral-melt vanadium oxybarometry for primitive arc magmas: effect of hydrous melt composition on fO2 estimates. Contrib Mineral Petrol 179, 39 (2024). https://doi.org/10.1007/s00410-024-02113-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-024-02113-4

Keywords

Navigation