Skip to main content

Advertisement

Log in

Titanium isotopic fractionation during alkaline magma differentiation at St. Helena Island

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

To better understand the behavior of Ti isotope fractionation during alkaline magma differentiation, we studied well characterized alkaline lavas from St. Helena Island (South Atlantic), as well as their titanomagnetite separates. The lavas are classified into three groups according to petrographic observations and major element composition. Group 1 and Group 2 samples (5 to > 13 wt.% MgO) have a narrow δ49/47Ti range (− 0.02 to 0.05‰), suggesting that Ti isotopic fractionation is insignificant in less evolved basaltic lavas. Conversely, Group 3 samples (MgO < 5 wt.%) are saturated with titanomagnetite and display a wide range in δ49/47Ti (− 0.02 to 1.96‰). The δ49/47Ti values for Group 3 samples show significant correlation with TiO2 and SiO2 content, as well as with Mg and Fe isotopic values. Moreover, titanomagnetite phenocrysts from Group 3 rocks have remarkably lighter δ49/47Ti values (− 0.54 to 0.01‰) relative to the corresponding whole rock (− 0.02 to 0.21‰), indicating that titanomagnetite crystallization exerts significant control over the δ49/47Ti of Group 3 samples. These observations are further supported by modeling calculations. Together with published Ti isotope data, the results demonstrate that the range in Ti isotopic evolution in alkaline, calc-alkaline and tholeiitic magmatic systems is controlled by fractional crystallization of diverse Fe-Ti oxides with contrasting Ti isotopic compositions. This makes Ti stable isotopes an important geochemical tracer for magma evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data relating to this work are available in the main text or Supplementary Information.

References

  • Aarons SM, Reimink JR, Greber ND, Heard AW, Zhang Z, Dauphas N (2020) Titanium isotopes constrain a magmatic transition at the Hadean-Archean boundary in the Acasta Gneiss Complex. Sci Adv 6:1–9

    Article  Google Scholar 

  • Aarons SM, Dauphas N, Blanchard M, Zeng H, Nie NX, Johnson AC, Greber ND, Hopp T (2021) Clues from ab initio calculations on titanium isotopic fractionation in tholeiitic and calc-alkaline magma series. ACS Earth Space Chem 5:2466–2480

    Article  ADS  CAS  Google Scholar 

  • Ackerson MR, Tailby ND, Watson EB (2017) XAFS spectroscopic study of Ti coordination in garnet. Am Mineral 102:173–183

    Article  ADS  Google Scholar 

  • An YJ, Huang JX, Griffin WL, Liu CZ, Huang F (2017) Isotopic composition of Mg and Fe in garnet peridotites from the Kaapvaal and Siberian cratons. Geochim Cosmochim Acta 200:167–185

    Article  ADS  CAS  Google Scholar 

  • Anguelova M, Fehr MA, Takazawa E, Schönbächler M (2022) Titanium isotope heterogeneity in the Earth’s mantle: a case study of the Horoman peridotite massif. Geochim Cosmochim Acta 355:356–368

    Article  ADS  Google Scholar 

  • Baker I (1968) Intermediate oceanic volcanic rocks and the ‘Daly gap.’ Earth Planet Sci Lett 4:103–106

    Article  ADS  Google Scholar 

  • Baker I (1969) Petrology of the volcanic rocks of Saint Helena Island. South Atlantic Geol Soc Am Bull 80:1283

    Article  CAS  Google Scholar 

  • Bigeleisen J, Mayer MG (1947) Calculation of equilibrium constants for isotopic exchange reactions. J Chem Phys 15:261–267

    Article  ADS  CAS  Google Scholar 

  • Bosi F, Halenius U, Skogby H (2009) Crystal chemistry of the magnetite-ulvospinel series. Am Miner 94:181–189

    Article  ADS  CAS  Google Scholar 

  • Chaffey DJ, Cliff RA, Wilson BM (1989) Characterization of the St. Helena magma source. Geol Soc (Lond) Spec Publ 42: 257–276.

  • Chen KY, Bao ZA, Yuan HL, Lv N (2022) Direct measurement of Fe isotope compositions in iron-dominated minerals without column chromatography using MC-ICP-MS. J Anal at Spectrom 37(2):249–263

    Article  CAS  Google Scholar 

  • Craddock PR, Dauphas N (2011) Iron isotopic compositions of geological reference materials and chondrites. Geostand Geoanal Res 35:101–123

    Article  CAS  Google Scholar 

  • Craddock PR, Warren JM, Dauphas N (2013) Abyssal peridotites reveal the near-chondritic Fe isotopic composition of the Earth. Earth Planet Sci Lett 365:63–76

    Article  ADS  CAS  Google Scholar 

  • Deng ZB, Moynier F, Sossi PA, Chaussidon M (2018a) Bridging the depleted MORB mantle and the continental crust using titanium isotopes. Geochem Perspect Lett 1:53–64

    Google Scholar 

  • Deng ZB, Moynier F, van ZuilenK SPA, Pringle EA, Chaussidon M (2018b) of resolvable titanium stable isotopic variations in bulk chondrites. Geochim Cosmochim Acta 239:409–419

    Article  ADS  CAS  Google Scholar 

  • Deng ZB, Chaussidon M, Savage P, Robert F, Pik R, Moynier F (2019) Titanium isotopes as a tracer for the plume or island arc affinity of felsic rocks. Proc Natl Acad Sci USA 116:1132–1135

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng ZB, Schiller M, Jackson MG, Millet MA, Pan L, Nikolajsen K, Saji NS, Huang DY, Bizzarro M (2023) Earth’s evolving geodynamic regime recorded by titanium isotopes. Nature 621:100–104

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Farges F, Brown GE (1997) Coordination chemistry of titanium (IV) in silicate glasses and melts: IV. XANES studies of synthetic and natural volcanic glasses and tektites at ambient temperature and pressure. Geochim Cosmochim Acta 61:1863–1870

    Article  ADS  CAS  Google Scholar 

  • Farges F, Brown GE, Navrotsky A, Gan H, Rehr JJ (1996a) Coordination chemistry of Ti (IV) in silicate glasses and melts: II. Glasses at ambient temperature and pressure. Geochim Cosmochim Acta 60:3039–3053

    Article  ADS  CAS  Google Scholar 

  • Farges F, Brown GE Jr, Rehr JJ (1996b) Coordination chemistry of Ti(IV) in silicate glasses and melts: I. XAFS study of titanium coordination in oxide compounds. Geochim Cosmochim Acta 60:3023–3038

    Article  ADS  CAS  Google Scholar 

  • Greber ND, Dauphas N, Bekker A, Ptácěk MP, Bindeman IN, Hofmann A (2017a) Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago. Science 357:1271–1274

    Article  ADS  CAS  PubMed  Google Scholar 

  • Greber ND, Dauphas N, Puchtel IS, Hofmann BA, Arndt NT (2017b) Titanium stable isotopic variations in chondrites, achondrites and lunar rocks. Geochim Cosmochim Acta 213:534–552

    Article  ADS  CAS  Google Scholar 

  • Greber ND, Pettke T, Vilela N, Lanari P, Dauphas N (2021) Titanium isotopic compositions of bulk rocks and mineral separates from the Kos magmatic suite: Insights into fractional crystallization and magma mixing processes. Chem Geol 578:120303

    Article  CAS  Google Scholar 

  • Hanyu T, Kawabata H, Tatsumi Y, Kimura JI, Hyodo H, Sato K, Miyazaki T, Chang Q, Hirahara Y, Takahashi T, Senda R, Nakai S (2014) Isotope evolution in the HIMU reservoir beneath St. Helena: implications for the mantle recycling of U and Th. Geochim Cosmochim Acta 143:232–252

    Article  ADS  CAS  Google Scholar 

  • He YS, Ke S, Teng FZ, Wang TT, Wu HJ, Lu YH, Li SG (2015) High-precision iron isotope analysis of geological reference materials by high-resolution MC-ICP-MS. Geostand Geoanal Res 39:341–356

    Article  CAS  Google Scholar 

  • He XY, Ma JL, Wei GJ, Zhang L, Wang ZB, Wang QS (2020) A new procedure for titanium separation in geological samples for 49Ti/47Ti ratio measurement by MC-ICP-MS. J Anal at Spectrom 35:100–106

    Article  CAS  Google Scholar 

  • Hoare L, Klaver M, Saji NS, Gillies J, Parkinson IJ, Lissenberg CJ, Millet MA (2020) Melt chemistry and redox conditions control titanium isotope fractionation during magmatic differentiation. Geochim Cosmochim Acta 282:38–54

    Article  ADS  CAS  Google Scholar 

  • Hoare L, Klaver M, Muir DD, Klemme S, Barling J, Parkinson IJ, Millet MA (2022) Empirical and experimental constraints on Fe-Ti oxide-melt titanium isotope fractionation factors. Geochim Cosmochim Acta 326:253–272

    Article  ADS  CAS  Google Scholar 

  • Howard CJ, Sabine TM, Dickson F (1991) Structural and thermal parameters for rutile and anatase. Acta Crystallogr B 47:462–468

    Article  ADS  Google Scholar 

  • Johnson AC, Aarons SM, Dauphas N, Nie NX, Zeng H, Helz RT, Romaniello SJ, Anbar AD (2019) Titanium isotopic fractionation in Kilauea Iki lava lake driven by oxide crystallization. Geochim Cosmochim Acta 264:180–190

    Article  ADS  CAS  Google Scholar 

  • Johnson AC, Zhang ZJ, Dauphas N, Rudnick RL, Foden J, Toc M (2023) Redox and mineral controls on Fe and Ti isotopic fractionations during calc-alkaline magmatic differentiation. Geochim Cosmochim Acta 355:1–12

    Article  ADS  CAS  Google Scholar 

  • Kawabata H, Hanyu T, Chang Q, Kimura JI, Nichols ARL, Tatsumi Y (2011) The petrology and geochemistry of St. Helena Alkali Basalts: evaluation of the oceanic crust-recycling model for HIMU OIB. J Petrol 52:791–838

    Article  ADS  CAS  Google Scholar 

  • Kessel R, Schmidt MW, Ulmer P, Pettke, (2005) Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437(7059):724–727

    Article  ADS  CAS  PubMed  Google Scholar 

  • Klemme S, Günther D, Hametner K, Prowatke S, Zack T (2006) The partitioning of trace elements between ilmenite, ulvospinel, armalcolite and silicate melts with implications for the early differentiation of the moon. Chem Geol 234(3–4):251–263

    Article  ADS  CAS  Google Scholar 

  • Kommescher S, Fonseca R, Kurzweil F, Thiemens M, Münker C, Sprung P (2020) Unravelling lunar mantle source processes via the Ti isotope composition of lunar basalts. Geochem Perspect Lett 13:13–18

    Article  Google Scholar 

  • Konter JG, Pietruszka AJ, Hanan BB, Finlayson VA, Craddock PR, Jackson MG, Dauphas N (2016) Unusual δ56Fe values in Samoan rejuvenated lavas generated in the mantle. Earth Planet Sci Lett 450:221–232

    Article  ADS  CAS  Google Scholar 

  • Leitzke FP, Fonseca ROC, Göttlicher J, Steininger R, Jahn S, Prescher C, Lagos M (2018) Ti K-edge XANES study on the coordination number and oxidation state of Titanium in pyroxene, olivine, armalcolite, ilmenite, and silicate glass during mare basalt petrogenesis. Contrib Mineral Petrol 173:1–17

    Article  CAS  Google Scholar 

  • Li J, Tang SH, Zhu XK, Ma JX, Zhao XM (2022) Titanium isotope analysis of igneous reference materials using a Double-Spike MC-ICP-MS method. Acta Geol Sin 96(2):517–524

    Article  CAS  Google Scholar 

  • Mandl MB (2019) Titanium isotope fractionation on the Earth and Moon: constraints on magmatic processes and moon formation. Dissertation, ETH Zurich. https://doi.org/10.3929/ethz-b-000351171

  • Mathieu R, Zetterström L, Cuney M, Gauthier-Lafaye F, Hidaka H (2001) Alteration of monazite and zircon and lead migration as geochemical tracers of fluid paleocirculations around the Oklo-Okélobondo and Bangombé natural nuclear reactor zones (Franceville basin, Gabon). Chem Geol 171:147–171

    Article  ADS  CAS  Google Scholar 

  • Millet MA, Dauphas N (2014) Ultra-precise titanium stable isotope measurements by double-spike high resolution MC-ICP-MS. J Anal at Spectrom 29:1444–1458

    Article  CAS  Google Scholar 

  • Millet MA, Dauphas N, Greber ND, Burton KW, Dale CW, Debret B, Macpherson CG, Nowell GM, Williams HM (2016) Titanium stable isotope investigation of magmatic processes on the Earth and Moon. Earth Planet Sci Lett 449:197–205

    Article  ADS  CAS  Google Scholar 

  • Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib Mineral Petrol 69(1):33–47

    Article  ADS  CAS  Google Scholar 

  • Prytulak J, Elliott T (2007) TiO2 enrichment in ocean island basalts. Earth Planet Sci Lett 263:388–403

    Article  ADS  CAS  Google Scholar 

  • Rapp JF, Klemme S, Butler IB, Harley SL (2010) Extremely high solubility of rutile in chloride and fluoride-bearing metamorphic fluids: an experimental investigation. Geology 38(4):323–326

    Article  ADS  CAS  Google Scholar 

  • Rzehak LJA, Kommescher S, Kurzweil F, Sprung P, Leitzke FP, Fonseca ROC (2021) The redox dependence of titanium isotope fractionation in synthetic Ti-rich lunar melts. Contrib Mineral Petrol 176:1–16

    Article  Google Scholar 

  • Rzehak LJA, Kommescher S, Hoare L, Kurzweil F, Sprung P, Leitzke F, Fonseca R (2022) Redox-dependent Ti stable isotope fractionation on the Moon: implications for current lunar magma ocean models. Contrib Mineral Petrol 177:81

    Article  ADS  Google Scholar 

  • Schauble EA (2004) Applying stable isotope fractionation theory to new systems. Rev Mineral Geochem 55:65–111

    Article  CAS  Google Scholar 

  • Smyth JR, Bish L (1988) Crystal structure and cation sites of the rock forming minerals. Allen and Unwin, Boston

    Google Scholar 

  • Sossi PA, Foden JD, Halverson GP (2012) Redox-controlled iron isotope fractionation during magmatic differentiation: an example from the Red Hill intrusion. S Tasmania Contrib Mineral Petrol 164:757–772

    Article  ADS  CAS  Google Scholar 

  • Storck JC, Greber ND, Duarte JFV, Lanari P, Tiepolo M, Pettke T (2023) Molybdenum and titanium isotopic signatures of arc-derived cumulates. Chem Geol 617:121260

    Article  CAS  Google Scholar 

  • Teng FZ (2017) Magnesium isotope geochemistry. Rev Mineral. Geochemistry 82:219–287

    CAS  Google Scholar 

  • Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc. https://doi.org/10.1039/jr9470000562

    Article  PubMed  Google Scholar 

  • Wang WZ, Huang SC, Huang F, Zhao XM, Wu ZQ (2020) Equilibrium inter-mineral titanium isotope fractionation: Implication for high-temperature titanium isotope geochemistry. Geochim Cosmochim Acta 269:540–553

    Article  ADS  CAS  Google Scholar 

  • Wang XJ, Chen LH, Hanyu T, Zhong Y, Shi JH, Liu XW, Kawabata H, Zeng XLW (2021) Magnesium isotopic fractionation during basalt differentiation as recorded by evolved magmas. Earth Planet Sci Lett 565:116954

    Article  CAS  Google Scholar 

  • Weyer S, Ionov DA (2007) Partial melting and melt percolation in the mantle: the message from Fe isotopes. Earth Planet Sci Lett 259:119–133

    Article  ADS  CAS  Google Scholar 

  • Williams NH, Fehr MA, Parkinson IJ, Mandl MB, Schönbächler M (2021) Titanium isotope fractionation in solar system materials. Chem Geol 568:120009

    Article  CAS  Google Scholar 

  • Zhang XY, Chen LH, Wang XJ, Hanyu T, Hofmann AW, Komiya T, Nakamura K, Kato Y, Zeng G, Gou WX, Li WQ (2022) Zinc isotopic evidence for recycled carbonate in the deep mantle. Nat Commun 13:6085

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao XM, Zhang HF, Zhu XK, Tang SH, Yan B (2012) Iron isotope evidence for multistage melt–peridotite interactions in the lithospheric mantle of eastern China. Chem Geol 292–293:127–139

    Article  ADS  Google Scholar 

  • Zhao XM, Tang SH, Li J, Wang H, Helz R, Marsh B, Zhu XK, Zhang HF (2020) Titanium isotopic fractionation during magmatic differentiation. Contrib Mineral Petrol 175:1–16

    Article  Google Scholar 

  • Zhao J, Wang XJ, Chen LH, Hanyu T, Shi JH, Liu XW (2022) The effect of Fe-Ti oxide separation on iron isotopic fractionation during basalt differentiation. Contrib Mineral Petrol 177(10):101

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by the National Natural Science Foundation of China (42122020 and 41973015) and the National Key R&D Program of China (2019YFA0708400). We appreciate Nicolas Dauphas and Zhengbin Deng for providing the OL-Ti and IGPG-Ti standards. We are also grateful to Zhiyong Zhu and Jianxiong Ma for Ti isotope analyses. We warmly thank the editor Othmar Müntener and anonymous reviewers for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinmiao Zhao.

Ethics declarations

Conflict of Interest

The authors declare that they have no known conflicts of interest.

Additional information

Communicated by Othmar Müntener.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 149 KB)

Supplementary file2 (DOCX 37 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Wang, XJ., Jia, X. et al. Titanium isotopic fractionation during alkaline magma differentiation at St. Helena Island. Contrib Mineral Petrol 179, 6 (2024). https://doi.org/10.1007/s00410-023-02085-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-023-02085-x

Keywords

Navigation