Skip to main content
Log in

Coeval shoshonitic and calc-alkaline mantle-derived magmatism in an ancient continental arc root

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Subduction-related shoshonitic and calc-alkaline plutons coexisted in the Paleoproterozoic Khondalite belt (North China Craton). They intruded at 1.97–1.96 Ga and were overprinted by 1.94–1.92 Ga high-temperature metamorphism. The mafic to intermediate (SiO2 = 51.8–55.5 wt%) Wudangzhao shoshonitic metamonzodiorite has high K2O (3.0–4.9 wt%) contents. In contrast, the mafic (SiO2 = 48.5–51.7 wt%) Yebaigou metagabbro is sodium-rich (Na2O/K2O > 2). In Harker diagrams, the two intrusions show different magmatic evolution trends for selected major and trace elements, suggesting that they belong to two distinct magma series. Both intrusions are enriched in light rare earth element and depleted in high field strength elements, such as Nb, Ta, and Zr, in the trace-element diagrams normalized to the primitive mantle. The low εNd 1960 Ma values (− 3.1 to + 0.6) of whole-rock samples, the low εHf(t) values (− 2.2 to + 0.9) of magmatic zircon samples, and the relatively high δ18O values (+ 5.9 to + 6.4‰) of zircon crystals indicate that the mantle source of both intrusions had been metasomatized by fluids/melts derived from subducted continental crustal material. Partial melting of the amphibole and/or phlogopite-bearing mantle yielded the calc-alkaline melt with the chemical fingerprint characteristic for the Yebaigou metagabbro. Small-volume partial melting of a similar mantle source at greater depth produced shoshonitic melts that formed the Wudangzhao metamonzodiorites. The Wudangzhao metamonzodiorites and Yebaigou metagabbros represent part of a Paleoproterozoic continental magmatic arc on an Archean basement. This study shows that shoshonitic and calc-alkaline magmatism may exist coevally above ancient subduction zones and, thus, could provide some clues for distinguishing upper and lower plates in deeply eroded ancient collisional belts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ajaji T, Weis D, Giret A, Bouabdellah M (1998) Coeval potassic and sodic calc-alkaline series in the post-collisional Hercynian Tanncherfi intrusive complex, northeastern Morocco: geochemical, isotopic and geochronological evidence. Lithos 45:371–393

    Article  Google Scholar 

  • Arndt NT, Jenner GA (1986) Crustally contaminated komatiites and basalts from Kambalda, Western Australia. Chem Geol 56:229–255

    Article  Google Scholar 

  • Bacon CR (1990) Calc-alkaline, Shoshonitic, and Primitive Tholeiitic lavas from Monogenetic Volcanoes near Crater Lake, Oregon. J Petrol 31:135–166

    Article  Google Scholar 

  • Blichert-Toft J, Chauvel C, Albarède F (1997) Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contrib Mineral Petrol 127:248–260

    Article  Google Scholar 

  • Bourdon E, Eissen J-P, Gutscher M-A, Monzier M, Hall ML, Cotten J (2003) Magmatic response to early aseismic ridge subduction: the Ecuadorian margin case (South America). Earth Planet Sci Lett 205:123–138

    Article  Google Scholar 

  • Cai J, Liu F, Liu P, Liu C, Wang F, Shi J (2014) Metamorphic PT path and tectonic implications of pelitic granulites from the Daqingshan Complex of the Khondalite Belt, North China Craton. Precambr Res 241:161–184

    Article  Google Scholar 

  • Cai J, Liu F, Liu P, Wang F, Liu C, Shi J (2017) Anatectic record and P–T path evolution of metapelites from the Wulashan Complex, Khondalite Belt, North China Craton. Precambr Res 303:10–29

    Article  Google Scholar 

  • Chung SL, Wang KL, Crawford AJ, Kamenetsky V, Chen CH, Lan CY, Chen CH (2001) High-Mg potassic rocks from Taiwan: implications for the genesis of orogenic potassic lavas. Lithos 59:153–170

    Article  Google Scholar 

  • Chung SL, Chu MF, Zhang Y, Xie Y, Lo CH, Lee TY, Lan CY, Li X, Zhang Q, Wang Y (2005) Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth Sci Rev 68:173–196

    Article  Google Scholar 

  • Clarke GL, Klepeis KA, Daczko NR (2000) Cretaceous high-P granulites at Milford Sound, New Zealand: metamorphic history and emplacement in a convergent margin setting. J Metamorph Geol 18:359–374

    Article  Google Scholar 

  • Coira B, Kay SM (1993) Implications of quaternary volcanism at Cerro Tuzgle for crustal and mantle evolution of the Puna Plateau, Central Andes, Argentina. Contrib Mineral Petrol 113:40–58

    Article  Google Scholar 

  • Collins WJ (2002) Hot orogens, tectonic switching, and creation of continental crust. Geology 30:535–538

    Article  Google Scholar 

  • Collins W, Vernon R (1991) Orogeny associated with anticlockwise PTt paths: evidence from low-P, high-T metamorphic terranes in the Arunta inlier, central Australia. Geology 19:835–838

    Article  Google Scholar 

  • Condamine P, Médard E (2014) Experimental melting of phlogopite-bearing mantle at 1 GPa: implications for potassic magmatism. Earth Planet Sci Lett 397:80–92

    Article  Google Scholar 

  • Conticelli S, Peccerillo A (1992) Petrology and geochemistry of potassic and ultrapotassic volcanism in central Italy: petrogenesis and inferences on the evolution of the mantle sources. Lithos 28:221–240

    Article  Google Scholar 

  • Conticelli S, Guarnieri L, Farinelli A, Mattei M, Avanzinelli R, Bianchini G, Boari E, Tommasini S, Tiepolo M, Prelević D, Venturelli G (2009) Trace elements and Sr–Nd–Pb isotopes of K-rich, shoshonitic, and calc-alkaline magmatism of the Western Mediterranean Region: genesis of ultrapotassic to calc-alkaline magmatic associations in a post-collisional geodynamic setting. Lithos 107:68–92

    Article  Google Scholar 

  • Dan W, Li XH, Guo J, Liu Y, Wang XC (2012) Integrated in situ zircon U–Pb age and Hf–O isotopes for the Helanshan khondalites in North China Craton: Juvenile crustal materials deposited in active or passive continental margin? Precambr Res 222–223:143–158

    Article  Google Scholar 

  • Dan W, Li XH, Wang Q, Wang XC, Liu Y, Wyman DA (2014) Paleoproterozoic S-type granites in the Helanshan Complex, Khondalite Belt, North China Craton: implications for rapid sediment recycling during slab break-off. Precambr Res 254:59–72

    Article  Google Scholar 

  • Dong C, Liu DY, Li JJ, Wan YS, Zhou HY, Li CD, Yang YH, Xie LW (2007) Palaeoproterozoic Khondalite Belt in the western North China Craton: new evidence from SHRIMP dating and Hf-isotope composition of zircons from metamorphic rocks in the Bayanwula-Helanshan area. Chin Sci Bull 52:1913–1922

    Article  Google Scholar 

  • Dong C, Wan Y, Xu Z, Liu D, Yang Z, Ma M, Xie H (2012) SHRIMP zircon U–Pb dating of late Paleoproterozoic kondalites in the Daqing Mountains area on the North China Craton. Sci China Earth Sci 56:115–125

    Article  Google Scholar 

  • Foley S (1992) Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos 28:435–453

    Article  Google Scholar 

  • Fumagalli P, Zanchetta S, Poli S (2009) Alkali in phlogopite and amphibole and their effects on phase relations in metasomatized peridotites: a high-pressure study. Contrib Mineral Petrol 158:723

    Article  Google Scholar 

  • Garrido CJ (2006) Petrogenesis of Mafic Garnet Granulite in the Lower Crust of the Kohistan Paleo-arc Complex (Northern Pakistan): implications for intra-crustal differentiation of Island Arcs and generation of continental crust. J Petrol 47:1873–1914

    Article  Google Scholar 

  • Grove TL, Elkins-Tanton LT, Parman SW, Chatterjee N, Müntener O, Gaetani GA (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Miner Petrol 145(5):515–533

    Article  Google Scholar 

  • Guillot MG, Escayola M, Acevedo R (2011) Calc-alkaline rear-arc magmatism in the Fuegian Andes: implications for the mid-cretaceous tectonomagmatic evolution of southernmost South America. J S Am Earth Sci 31:1–16

    Article  Google Scholar 

  • Guo J, O’Brien P, Zhai M (2002) High-pressure granulites in the Sanggan area, North China craton: metamorphic evolution, P–T paths and geotectonic significance. J Metamorph Geol 20:741–756

    Article  Google Scholar 

  • Guo L, Zhang H-F, Harris N, Pan F-B, Xu W-C (2013) Late Cretaceous (~ 81 Ma) high-temperature metamorphism in the southeastern Lhasa terrane: implication for the Neo-Tethys ocean ridge subduction. Tectonophysics 608:112–126

    Article  Google Scholar 

  • Guo Z, Wilson M, Zhang M, Cheng Z, Zhang L (2015) Post-collisional ultrapotassic mafic magmatism in South Tibet: products of partial melting of pyroxenite in the mantle wedge induced by roll-back and delamination of the subducted Indian Continental Lithosphere Slab. J Petrol 56:1365–1406. https://doi.org/10.1093/petrology/egv040

    Article  Google Scholar 

  • Hollis JA, Clarke G, Klepeis K, Daczko N, Ireland T (2003) Geochronology and geochemistry of high-pressure granulites of the Arthur River Complex, Fiordland, New Zealand: Cretaceous magmatism and metamorphism on the palaeo-Pacific Margin. J Metamorph Geol 21:299–313

    Article  Google Scholar 

  • Hu Z, Liu Y, Gao S, Liu W, Zhang W, Tong X, Lin L, Zong K, Li M, Chen H (2012) Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. J Anal Spectrom 27:1391–1399

    Article  Google Scholar 

  • Huang XL, Niu YL, Xu YG, Chen LL, Yang QJ (2010) Mineralogical and geochemical constraints on the petrogenesis of post-collisional potassic and ultrapotassic rocks from western Yunnan, SW China. J Petrol 51:1617–1654

    Article  Google Scholar 

  • Huang G, Guo J, Jiao S, Palin R (2019) What drives the continental crust to be extremely hot so quickly? J Geophys Res Solid Earth 124:11218–11231

    Article  Google Scholar 

  • Inoue T, Irifune T, Yurimoto H, Miyagi I (1998) Decomposition of K-amphibole at high pressures and implications for subduction zone volcanism. Phys Earth Planet Inter 107:221–231

    Article  Google Scholar 

  • Jiao S, Guo J (2020) Paleoproterozoic UHT metamorphism with isobaric cooling (IBC) followed by decompression–heating in the Khondalite Belt (North China Craton): new evidence from two sapphirine formation processes. J Metamorph Geol 38:357–378

    Article  Google Scholar 

  • Jiao S, Fitzsimons ICW, Guo J (2017) Paleoproterozoic UHT metamorphism in the Daqingshan Terrane, North China Craton: new constraints from phase equilibria modeling and SIMS U–Pb zircon dating. Precambr Res 303:208–227

    Article  Google Scholar 

  • Kay SM, Kay R, Citron G (1982) Tectonic controls on tholeiitic and calc-alkaline magmatism in the Aleutian Arc. J Geophys Res Solid Earth 87:4051–4072

    Article  Google Scholar 

  • Kerrick D, Connolly J (2001) Metamorphic devolatilization of subducted oceanic metabasalts: implications for seismicity, arc magmatism and volatile recycling. Earth Planet Sci Lett 189:19–29

    Article  Google Scholar 

  • Krmíček L, Romer RL, Ulrych J, Glodny J, Prelević D (2016) Petrogenesis of orogenic lamproites of the Bohemian Massif: Sr–Nd–Pb–Li isotope constraints for Variscan enrichment of ultra-depleted mantle domains. Gond Res 35:198–216

    Article  Google Scholar 

  • Kushiro I, Syono Y, Akimoto S (1967) Stability of phlogopite at high pressures and possible presence of phlogopite in the earth’s upper mantle. Earth Planet Sci Lett 3:197–203

    Article  Google Scholar 

  • LaTourrette T, Hervig RL, Holloway JR (1995) Trace element partitioning between amphibole, phlogopite, and basanite melt. Earth Planet Sci Lett 135:13–30

    Article  Google Scholar 

  • Li XH, Liu Y, Li QL, Guo CH, Chamberlain KR (2009) Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochem Geophys Geosys 10:Q04010. https://doi.org/10.1029/2009GC002400

    Article  Google Scholar 

  • Li XH, Li WX, Li QL, Wang XC, Liu Y, Yang YH (2010) Petrogenesis and tectonic significance of the ∼ 850 Ma Gangbian alkaline complex in South China: evidence from in situ zircon U–Pb dating, Hf–O isotopes and whole-rock geochemistry. Lithos 114:1–15

    Article  Google Scholar 

  • Li X, Tang G, Gong B, Yang Y, Hou K, Hu Z, Li Q, Liu Y, Li W (2013) Qinghu zircon: a working reference for microbeam analysis of U–Pb age and Hf and O isotopes. Chin Sci Bull 58:4647–4654

    Article  Google Scholar 

  • Liégeois JP, Navez J, Hertogen J, Black R (1998) Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos 45:1–28

    Article  Google Scholar 

  • Liu Y, Zong K, Kelemen PB, Gao S (2008) Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chem Geol 247:133–153

    Article  Google Scholar 

  • Liu S, Tsunogae T, Li W, Shimizu H, Santosh M, Wan Y, Li J (2012) Paleoproterozoic granulites from Heling’er: implications for regional ultrahigh-temperature metamorphism in the North China Craton. Lithos 148:54–70

    Article  Google Scholar 

  • Liu PH, Liu FL, Cai J, Liu JH, Shi JR, Wang F (2013) Geochronological and geochemical study of the Lijiazi mafic granulites from the DaqingshanWulashan metamorphic complex, the central Khondalite Belt in the North China Craton. Acta Petrol Sin 29:462–484

    Google Scholar 

  • Liu P, Liu F, Liu C, Liu J, Wang F, Xiao L, Cai J, Shi J (2014) Multiple mafic magmatic and high-grade metamorphic events revealed by zircons from meta-mafic rocks in the Daqingshan–Wulashan complex of the Khondalite Belt, North China Craton. Precambr Res 246:334–357

    Article  Google Scholar 

  • Lu LZ, Jin SQ (1993) PTt paths and tectonic history of an early Precambrian granulite facies terrane, Jining district, southeastern Inner Mongolia, China. J Metamorph Geol 11:483–498

    Article  Google Scholar 

  • Lu LZ, Jin SQ, Xu XT, Liu FL (1996) Early Precambrian Khondalite Series in North China. Changchun Publishing House, Changchun

    Google Scholar 

  • Ludwig K (2008) Isoplot version 4.15: a geochronological toolkit for microsoft Excel. Berkeley Geochronol Center Spec Publ 4:247–270

    Google Scholar 

  • Luhr JF, Carmichael ISE (1985) Jorullo Volcano, Michoacán, Mexico (1759–1774): the earliest stages of fractionation in calc-alkaline magmas. Contrib Mineral Petrol 90:142–161

    Article  Google Scholar 

  • Ma M, Wan Y, Santosh M, Xu Z, Xie H, Dong C, Liu D, Guo C (2012) Decoding multiple tectonothermal events in zircons from single rock samples: SHRIMP zircon U–Pb data from the late Neoarchean rocks of Daqingshan, North China Craton. Gondwana Res 22:810–827. https://doi.org/10.1016/j.gr.2012.02.020

    Article  Google Scholar 

  • Ma L, Wang Q, Wyman DA, Jiang Z-Q, Yang J-H, Li Q-L, Gou G-N, Guo H-F (2013) Late Cretaceous crustal growth in the Gangdese area, southern Tibet: petrological and Sr–Nd–Hf–O isotopic evidence from Zhengga diorite–gabbro. Chem Geol 349:54–70

    Article  Google Scholar 

  • Meen JK (1987) Formation of shoshonites from calcalkaline basalt magmas: geochemical and experimental constraints from the type locality. Contrib Mineral Petrol 97:333–351

    Article  Google Scholar 

  • Middlemost EA (1994) Naming materials in the magma/igneous rock system. Earth Sci Rev 37:215–224

    Article  Google Scholar 

  • Miller C, Schuster R, Klötzli U, Frank W, Purtscheller F (1999) Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr–Nd–Pb–O isotopic constraints for mantle source characteristics and petrogenesis. J Petrol 40:699–715

    Article  Google Scholar 

  • Müntener O, Hermann J, Trommsdorff V (2000) Cooling history and exhumation of lower-crustal granulite and upper mantle (Malenco, Eastern Central Alps). J Petrol 41:175–200

    Article  Google Scholar 

  • Palin RM, Searle MP, Waters DJ, Parrish RR, Roberts NMW, Horstwood MSA, Yeh M-W, Chung S-L, Anh TT (2013) A geochronological and petrological study of anatectic paragneiss and associated granite dykes from the Day Nui Con Voi metamorphic core complex, North Vietnam: constraints on the timing of metamorphism within the Red River shear zone. J Metamorph Geol 31:359–387

    Article  Google Scholar 

  • Peccerillo A (1985) Roman comagmatic province (central Italy): evidence for subduction-related magma genesis. Geology 13:103–106

    Article  Google Scholar 

  • Peccerillo A, Martinotti G (2006) The Western Mediterranean lamproitic magmatism: origin and geodynamic significance. Terra Nova 18:109–117

    Article  Google Scholar 

  • Peng P, Guo JH, Windley BF, Liu F, Chu Z, Zhai MG (2012) Petrogenesis of Late Paleoproterozoic Liangcheng charnockites and S-type granites in the central-northern margin of the North China Craton: implications for ridge subduction. Precambr Res 222–223:107–123

    Article  Google Scholar 

  • Pirard C, Hermann J (2015) Focused fluid transfer through the mantle above subduction zones. Geology 43:915–918

    Article  Google Scholar 

  • Polat A, Hofmann AW, Rosing MT (2002) Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chem Geol 184:231–254

    Article  Google Scholar 

  • Prelević D, Foley SF (2007) Accretion of arc-oceanic lithospheric mantle in the Mediterranean: evidence from extremely high-Mg olivines and Cr-rich spinel inclusions in lamproites. Earth Planet Sci Lett 256:120–135

    Article  Google Scholar 

  • Prelević D, Foley SF, Romer R, Conticelli S (2008) Mediterranean Tertiary lamproites derived from multiple source components in postcollisional geodynamics. Geochim Cosmochim Acta 72:2125–2156

    Article  Google Scholar 

  • Prelević D, Akal C, Foley SF, Romer RL, Stracke A, Bogaard PVD (2012) Ultrapotassic mafic rocks as geochemical proxies for post-collisional dynamics of orogenic lithospheric mantle: the case of Southwestern Anatolia, Turkey. J Petrol 53:1019–1055

    Article  Google Scholar 

  • Prelević D, Jacob DE, Foley SF (2013) Recycling plus: a new recipe for the formation of Alpine-Himalayan orogenic mantle lithosphere. Earth Planet Sci Lett 362:187–197

    Article  Google Scholar 

  • Ringuette L, Martignole J, Windley BF (1999) Magmatic crystallization, isobaric cooling, and decompression of the garnet-bearing assemblages of the Jijal sequence (Kohistan terrane, western Himalayas). Geology 27:139–142

    Article  Google Scholar 

  • Romer RL, Heinrich W, Schröder-Smeibidl B, Meixner A, Fischer C-O, Schulz C (2005) Elemental dispersion and stable isotope fractionation during reactive fluid-flow and fluid immiscibility in the Bufa del Diente aureole, NE-Mexico: evidence from radiographies and Li, B, Sr, Nd, and Pb isotope systematics. Contrib Mineral Petrol 149:400–429

    Article  Google Scholar 

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309

    Article  Google Scholar 

  • Santosh M, Sajeev K, Li JH, Liu SJ, Itaya T (2009) Counterclockwise exhumation of a hot orogen: the Paleoproterozoic ultrahigh-temperature granulites in the North China Craton. Lithos 110:140–152

    Article  Google Scholar 

  • Saunders AD, Tarney J, Weaver SD (1980) Transverse geochemical variations across the Antarctic Peninsula: implications for the genesis of calc-alkaline magmas. Earth Planet Sci Lett 46:344–360

    Article  Google Scholar 

  • Saunders AD, Norry MJ, Tarney J, Tarney J, Pickering KT, Knipe RJ, Dewey JF (1991) Fluid influence on the trace element compositions of subduction zone magmas. Philos Trans R Soc Lond Ser A Phys Eng Sci 335:377–392

    Google Scholar 

  • Savelli C (2002) Time–space distribution of magmatic activity in the western Mediterranean and peripheral orogens during the past 30 Ma (a stimulus to geodynamic considerations). J Geodyn 34:99–126

    Article  Google Scholar 

  • Schaefer BF, Turner SP, Rogers NW, Hawkesworth CJ, Williams HM, Pearson DG, Nowell GM (2000) Re–Os isotope characteristics of postorogenic lavas: implications for the nature of young lithospheric mantle and its contribution to basaltic magmas. Geology 28:563–566

    Article  Google Scholar 

  • Sen C, Dunn T (1995) Experimental modal metasomatism of a spinel lherzolite and the production of amphibole-bearing peridotite. Contrib Mineral Petrol 119:422–432

    Article  Google Scholar 

  • Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249:1–35

    Article  Google Scholar 

  • Soder CG, Romer RL (2018) Post-collisional potassic-ultrapotassic magmatism of the Variscan Orogen: implications for mantle metasomatism during continental subduction. J Petrol 59:1007–1034

    Article  Google Scholar 

  • Stowell H, Tulloch A, Zuluaga C, Koenig A (2010) Timing and duration of garnet granulite metamorphism in magmatic arc crust, Fiordland, New Zealand. Chem Geol 273:91–110

    Article  Google Scholar 

  • Sun SS, McDonough W (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345

    Article  Google Scholar 

  • Tatsumi Y (1989) Migration of fluid phases and genesis of basalt magmas in subduction zones. J Geophys Res Solid Earth 94:4697–4707

    Article  Google Scholar 

  • Tatsumi Y, Kogiso T (1997) Trace element transport during dehydration processes in the subducted oceanic crust: 2. Origin of chemical and physical characteristics in arc magmatism. Earth Planet Sci Lett 148:207–221

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford

    Google Scholar 

  • Turner S, Arnaud N, Liu J, Rogers N, Hawkesworth C, Harris N, Kelley S, van Calsteren P, Deng W (1996) Post-collision, shoshonitic volcanism on the Tibetan Plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts. J Petrol 37:45–71

    Article  Google Scholar 

  • Wan Y, Song B, Liu D, Wilde SA, Wu J, Shi Y, Yin X, Zhou H (2006) SHRIMP U–Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: evidence for a major Late Palaeoproterozoic tectonothermal event. Precambr Res 149:249–271

    Article  Google Scholar 

  • Wan Y, Liu D, Xu Z, Dong C, Wang Z, Zhou H, Yang Z, Liu Z, Wu J (2008) Paleoproterozoic crustally derived carbonate-rich magmatic rocks from the Daqinshan area, North China Craton: Geological, petrographical, geochronological and geochemical (Hf, Nd, O and C) evidence. Am J Sci 308:351–378

    Article  Google Scholar 

  • Wan Y, Liu D, Dong C, Xu Z, Wang Z, Wilde SA, Yang Y, Liu Z, Zhou H (2009) The Precambrian Khondalite Belt in the Daqingshan area, North China Craton: evidence for multiple metamorphic events in the Palaeoproterozoic era. Geol Soc Lond Spec Publ 323:73–97

    Article  Google Scholar 

  • Wan Y, Xu Z, Dong C, Nutman A, Ma M, Xie H, Liu S, Liu D, Wang H, Cu H (2013) Episodic Paleoproterozoic (∼ 2.45, ∼ 1.95 and ∼ 1.85 Ga) mafic magmatism and associated high temperature metamorphism in the Daqingshan area, North China Craton: SHRIMP zircon U–Pb dating and whole-rock geochemistry. Precambr Res 224:71–93

    Article  Google Scholar 

  • Wang L, Guo J, Peng P, Liu F, Windley BF (2015) Lithological units at the boundary zone between the Jining and Huai’an Complexes (central-northern margin of the North China Craton): a Paleoproterozoic tectonic mélange? Lithos 227:205–224

    Article  Google Scholar 

  • Wang LJ, Guo JH, Yin C, Peng P, Zhang J, Spencer CJ, Qian JH (2018) High-temperature S-type granitoids (charnockites) in the Jining complex, North China Craton: Restite entrainment and hybridization with mafic magma. Lithos 320–321:435–453

    Article  Google Scholar 

  • Wei C, Qian J, Zhou X (2014) Paleoproterozoic crustal evolution of the Hengshan–Wutai–Fuping region, North China Craton. Geosci Front 5:485–497

    Article  Google Scholar 

  • Williams HM, Turner SP, Pearce JA, Kelley SP, Harris NBW (2004) Nature of the source regions for post-collisional, potassic magmatism in southern and Northern Tibet from geochemical variations and inverse trace element modelling. J Petrol 45:555–607

    Article  Google Scholar 

  • Xia X, Sun M, Zhao G, Wu F, Xu P, Zhang J, Luo Y (2006) U–Pb and Hf isotopic study of detrital zircons from the Wulashan Khondalites: constraints on the evolution of the Ordos Terrane, Western Block of the North China Craton. Earth Planet Sci Lett 241:581–593

    Article  Google Scholar 

  • Xia X, Sun M, Zhao G, Wu F, Xu P, Zhang J, He Y (2008) Paleoproterozoic crustal growth in the Western Block of the North China Craton: evidence from detrital zircon Hf and whole rock Sr–Nd isotopic compositions of the Khondalites from the Jining Complex. Am J Sci 308:304–327

    Article  Google Scholar 

  • Yin C, Zhao G, Sun M, Xia X, Wei C, Zhou X, Leung W (2009) LA-ICP-MS U–Pb zircon ages of the Qianlishan complex: constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton. Precambr Res 174:78–94

    Article  Google Scholar 

  • Yin C, Zhao G, Sun M (2015) High-pressure pelitic granulites from the Helanshan complex in the Khondalite Belt, North China Craton: metamorphic Pt path and tectonic implications. Am J Sci 315:846–879

    Article  Google Scholar 

  • Yoshino T, Yamamoto H, Okudaira T, Toriumi M (1998) Crustal thickening of the lower crust of the Kohistan arc (N. Pakistan) deduced from Al zoning in clinopyroxene and plagioclase. J Metamorph Geol 16:729–748

    Article  Google Scholar 

  • Zhang Z, Dong X, Xiang H, Liou JG, Santosh M (2013) Building of the Deep Gangdese Arc, South Tibet: Paleocene Plutonism and Granulite-Facies Metamorphism. J Petrol 54:2547–2580

    Article  Google Scholar 

  • Zhang Z, Dong X, Xiang H, He Z, Liou JG (2014) Metagabbros of the Gangdese arc root, south Tibet: implications for the growth of continental crust. Geochim Cosmochim Acta 143:268–284

    Article  Google Scholar 

  • Zhang D, Guo J, Tian Z, Liu F (2016) Metamorphism and P–T evolution of high-pressure granulite in Chicheng, northern part of the Paleoproterozoic Trans-North China Orogen. Precambr Res 280:76–94

    Article  Google Scholar 

  • Zhao G, Sun M, Wilde SA, Li SZ (2005) Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambr Res 136:177–202

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the assistance of Li Qiuli, Ling Xiaoxiao, Tang Guoqiang and Li Jiao during the SIMS analyses, Li Chaofeng and Li Youlian during Pb isotope analyses, and Huang Guangyu during the field work. We thank Jean-Paul Liégeois and an anonymous reviewer for constructive comments and Editor Daniella Rubatto for thoughtful suggestions. This work was supported by the National Natural Science Foundation of China (Grant numbers 42072221, 41890832, 41890833 and 41702201), the Basic Scientific Research Foundations of the Institute of Geology, Chinese Academy of Geological Sciences (Grant numbers J2001 and J2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Wang.

Additional information

Communicated by Daniela Rubatto.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1465 KB)

Supplementary file2 (DOCX 2411 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Guo, J., Romer, R.L. et al. Coeval shoshonitic and calc-alkaline mantle-derived magmatism in an ancient continental arc root. Contrib Mineral Petrol 176, 57 (2021). https://doi.org/10.1007/s00410-021-01812-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-021-01812-6

Keywords

Navigation