Skip to main content

Advertisement

Log in

Majoritic garnet grains within shock-induced melt veins in amphibolites from the Ries impact crater suggest ultrahigh crystallization pressures between 18 and 9 GPa

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Shock-induced melt veins in amphibolites from the Nördlinger Ries often have chemical compositions that are similar to bulk rock (i.e., basaltic), but there are other veins that are confined to chlorite-rich cracks that formed before the impact and these are poor in Ca and Na. Majoritic garnets within the shock veins show a broad chemical variation between three endmembers: (1) \({}^{\text{VIII}}{{\text{M}^{2+}}_3} {}^{\text{VI}}{\text{Al}}_{2} ({}^{\text{IV}}{\text{SiO}}_{4} )_{3}\) (normal garnet, Grt), (2) \({}^{\text{VIII}}{{\text{M}^{2+}}_3} {}^{\text{VI}}[{\text{M}}^{2 + } ({\text{Si,Ti}})]({}^{\text{IV}}{\text{SiO}}_{4} )_{3}\)  (majorite, Maj), and (3) \({}^{\text{VIII}}({{\text {Na} {\text M}^{2+}}_2}) {}^{\text{VI}}[ ({\text{Si,Ti}}){\text {Al}}]({}^{\text{IV}}{\text{SiO}}_{4} )_{3}\) (Na-majorite50Grt50), whereby M2+ = Mg2+, Fe2+, Mn2+, Ca2+. In particular, we observed a broad variation in VI(Si,Ti) which ranges from 0.12 to 0.58 cations per formula unit (cpfu). All these majoritic garnets crystallized during shock pressure release at different ultrahigh pressures. Those with high VI(Si,Ti) (0.36–0.58 cpfu) formed at high pressures and temperatures from amphibole-rich melts, while majoritic garnets with lower VI(Si,Ti) of 0.12–0.27 cpfu formed at lower pressures and temperatures from chlorite-rich melts. Furthermore, majoritic garnets with intermediate values of VI(Si,Ti) (0.24–0.39) crystallized from melts with intermediate contents of Ca and Na. To the best of our knowledge the ‘MORB-type’ Ca–Na-rich majoritic garnets with maximum contents of 2.99 wt% Na2O and calculated crystallisation pressures of 16–18 GPa are the most extreme representatives ever found in terrestrial shocked materials. At the Ries, the duration of the initial contact and compression stage at the central location of impact is estimated to only ~ 0.1 s. We used a ~ 200-µm-thick shock-induced vein in a moderately shocked amphibolite to model its pressure–temperature–time (PTt) path. The graphic model manifests a peak temperature of ~ 2600 °C for the vein, continuum pressure lasting for ~ 0.02 s, a quench duration of ~ 0.02 s and a shock pulse of ~ 0.038 s. The small difference between the continuum pressure and the pressure of majoritic garnet crystallization underlines the usefulness of applying crystallisation pressures of majoritic garnets from metabasites for calculation of dynamic shock pressures of host rocks. Majoritic garnets of chlorite provenance, however, are not suitable for the determination of continuum pressure since they crystallized relatively late during shock release. An extraordinary glass- and majorite-bearing amphibole fragment in a shock-vein of one amphibolite documents the whole unloading path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akaogi M, Akimoto S (1977) Pyroxene-garnet solid-solution equilibria in the systems Mg4Si4O12–Mg3Al2Si3O12 and Fe4Si4O12–Fe3Al2Si3O12 at high pressures and temperatures. Phys Earth Planet Inter 15:90–106

    Article  Google Scholar 

  • Akaogi M, Navrotsky A, Yagi T, Akimoto S (1987) Pyroxene–garnet transformation: thermochemistry and elasticity of garnet solid solutions, and application to a pyrolite mantle. In: Manghnani MH, Syono Y (eds) High-pressure research in mineral physics. Terra Scientific Publishing Company (TERRAPUB), Tokyo, pp 251–260

    Google Scholar 

  • Bindi L, Dymshits AM, Bobrov AV, Litasov KD, Shatsky AF, Ohtani E, Litvin YA (2011) Crystal chemistry of sodium in the Earth’s interior: the structure of Na2MgSi5O12 synthesized at 17.5 GPa and 1700°C. Am Mineral 96:447–450

    Article  Google Scholar 

  • Biren MB, Spray JG (2011) Shock veins in the central uplift of the Manicouagan impact structure: context and genesis. Earth Planet Sci Lett 303:310–322

    Article  Google Scholar 

  • Bobrov AV, Kojitani H, Akaogi M, Litvin YA (2008) Phase relations on the diopside–jadeite–hedenbergite join up to 24 GPa and stability of Na-bearing majoritic garnet. Geochim Cosmochim Acta 72:2392–2408

    Article  Google Scholar 

  • Bobrov AV, Dymshits AM, Litvin YA (2009) Conditions of magmatic crystallization of Na-bearing majoritic garnets in the earth mantle: evidence from experimental and natural data. Geochem Int 47:951–965

    Article  Google Scholar 

  • Bromiley GD, Bromiley FA, Bromiley DW (2006) On the mechanisms for H and Al incorporation in stishovite. Phys Chem Miner 33:613–621

    Article  Google Scholar 

  • Buchner E, Schmieder M, Schwarz WH, Trieloff M (2013) Das Alter des Meteoritenkraters Nördlinger Ries—eine Übersicht und kurze Diskussion der neueren Datierungen des Riesimpakts. Z Dtsch Ges Geowiss 164:433–445

    Google Scholar 

  • Chao ECT (1967) Shock effects in certain rock-forming minerals. Science 156:192–202

    Article  Google Scholar 

  • Chao ECT, Hüttner R, Schmidt-Kaler H (1978) Principal exposures of the Ries meteorite crater in southern Germany. Bayer Geol Landesamt, München, p 84

    Google Scholar 

  • Chen M, Sharp TG, El Goresy A, Wopenka B, Xie X (1996) The majorite-pyrope plus magnesiowüstite assemblage: constraints on the history of shock veins in chondrites. Science 271:1570–1573

    Article  Google Scholar 

  • Chung JI, Kagi H (2002) High concentration of water in stishovite in the MORB system. Geophys Res Lett 29:2020. doi:10.1029/2002GL015579

    Article  Google Scholar 

  • Collerson KD, Williams Q, Kamber BS, Omori S, Arai H, Ohtani E (2010) Majoritic garnet: a new approach to pressure estimation of shock events in meteorites and the encapsulation of sub-lithospheric inclusions in diamond. Geochim Cosmochim Acta 74:5939–5957

    Article  Google Scholar 

  • Collins GS, Melosh HJ, Osinski GR (2012) The impact-cratering process. Elements 8:25–30

    Article  Google Scholar 

  • Dachille F, Zeto RJ, Roy R (1963) Coesite and stishovite: stepwise reversal transformations. Science 140:991–993

    Article  Google Scholar 

  • Dressler B, Graup G (1970) Pseudotachylite aus dem Nördlinger Ries, 2nd edition. Geol Bavar 61:201–228

    Google Scholar 

  • Dressler B, Graup G, Matzke K (1969) Die Gesteine des kristallinen Grundgebirges im Nördlinger Ries. Geol Bavar 61:201–228

    Google Scholar 

  • Dubrovinsky LS, El Goresy A, Gillet P, Wu X, Simionovici A (2009) A novel natural shock-induced high-pressure polymorph of FeTiO3 ilmenite with the Li-niobate structure from the Ries crater, Germany. Meteorit Planet Sci 44(S7):Abstract A64

    Google Scholar 

  • Dymshits AM, Bobrov AV, Bindi L, Litvin YA, Litasov KD, Shatskiy AF, Ohtani E (2013) Na-bearing majoritic garnet in the Na2MgSi5O12–Mg3Al2Si3O12 join at 11–20 GPa: phase relations, structural peculiarities and solid solutions. Geochim Cosmochim Acta 105:1–13

    Article  Google Scholar 

  • El Goresy A, Chen M, Gillet P, Dubrovinsky L, Graup G, Ahuja R (2001) A natural shock-induced dense polymorph of rutile with α-PbO2 structure in the suevite from the Ries crater in Germany. Earth Planet Sci Lett 192:485–495

    Article  Google Scholar 

  • El Goresy A, Dubrovinsky L, Gillet P, Graup G, Chen M (2010) Akaogiite: an ultra-dense polymorph of TiO2 with the baddeleyite-type structure, in shocked garnet gneiss from the Ries Crater, Germany. Am Mineral 95:892–895

    Article  Google Scholar 

  • El Goresy A, Gillet P, Miyahara M, Ohtani E, Ozawa S, Beck P, Montagnac G (2013) Shock-induced deformation of shergottites: shock-pressures and perturbations of magmatic ages on Mars. Geochim Cosmochim Acta 101:233–262

    Article  Google Scholar 

  • French BM (1998) Traces of a catastrophe: a handbook of shock-metamorphic effects in terrestrial meteorite impact structures. LPI Contribution No. 954 Lunar and Planetary Institute, 120 p

  • French BM, Koeberl C (2010) The convincing identification of terrestrial meteorite impact structures: what works, what doesn’t, and why. Earth Sci Rev 98:123–170

    Article  Google Scholar 

  • French BM, Short NM (1968) Shock metamorphism of natural materials. Mono Book Corp, Baltimore, p 644

    Google Scholar 

  • Gigl PD, Dachille F (1968) Effect of pressure and temperature on the reversal transitions of stishovite. Meteoritics 4:123–136

    Article  Google Scholar 

  • Gillet P, El Goresy A (2013) Shock events in the solar system: the message from minerals in terrestrial planets and asteroids. Annu Rev Earth Planet Sci 41:257–285

    Article  Google Scholar 

  • Gillet P, El Goresy A, Beck P, Chen M (2007) High-pressure mineral assemblages in shocked meteorites and shocked terrestrial rocks: mechanisms of phase transformations and constraints to pressure and temperature histories. In: Ohtani E (ed) Advances in high-pressure mineralogy. Geol Soc Amer Spec, Boulder, pp 57–82

    Chapter  Google Scholar 

  • Graup G (1977) Die Petrographie der kristallinen Gesteine der Forschungsbohrung Nördlingen 1973. Geol Bavar 75:219–229 (Paper 421)

    Google Scholar 

  • Graup G (1978) Das Kristallin im Nördlinger Ries Petrographische Zusammensetzung und Auswurfmechanismus der kristallinen Trümmermassen, Struktur des kristallinen Untergrundes und Beziehungen zum Moldanubikum. Enke Verlag, Stuttgart, p 190

    Google Scholar 

  • Harte B (2010) Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones. Mineral Mag 74:189–215

    Article  Google Scholar 

  • Hawthorne FC, Oberti R, Harlow GE, Maresch WV, Martin RF, Schumacher JC, Welch MD (2012) IMA report, nomenclature of the amphibole supergroup. Am Mineral 97:2031–2048

    Article  Google Scholar 

  • Hüttner R, Schmidt-Kaler H (1999) Wanderungen in der Erdgeschichte—Meteoritenkrater Nördlinger Ries, vol 10. Verlag F. Pfeil, München, p 144

    Google Scholar 

  • Irifune T (1987) An experimental investigation of the pyroxene-garnet transformation in a pyrolite composition and its bearing on the constitution of the mantle. Phys Earth Planet Inter 45:324–336

    Article  Google Scholar 

  • Irifune T, Sekine T, Ringwood AE, Hibberson WO (1986) The eclogite-garnetite transformation at high pressure and some geophysical implications. Earth Planet Sci Lett 77:245–256

    Article  Google Scholar 

  • James OB (1969) Jadeite: shock-induced formation from oligoclase, Ries crater, Germany. Science 165:1005–1008

    Article  Google Scholar 

  • Kenkmann T, Ivanov BA (2006) Target delamination by spallation and ejecta dragging: an example from the Ries crater’s periphery. Earth Planet Sci Lett 252:15–29

    Article  Google Scholar 

  • Kiseeva ES, Yaxley GM, Stepanov AS, Tkalčić H, Litasov KD, Kamenetsky VS (2013) Metapyroxenite in the mantle transition zone revealed from majorite inclusions in diamonds. Geology 41:883–886

    Article  Google Scholar 

  • Kiseeva ES, Wood BJ, Ghosh S, Stachel T (2016) The pyroxenite–diamond connection. Geochem Perspect Lett 2:1–9

    Article  Google Scholar 

  • Lambert P (1981) Breccia dikes: geological constraints on the formation of complex craters. In: Multi-ring basins. Formation and evolution. Proceedings of the lunar and planetary science conference, pp 59–78

  • Lambert P (2010) Target and impact deposits at Rochechouart impact structure, France. Geol Soc Am Spec 465:509–541

    Google Scholar 

  • Langenhorst F, Deutsch A (2012) Shock metamorphism of minerals. Elements 8:31–36

    Article  Google Scholar 

  • Langenhorst F, Dressler B (2003) First observation of silicate hollandite in a terrestrial rock. In: Large meteorite impacts. Lunar Planetary Institute contribution No. 1167, Abstract 4046

  • Langenhorst F, Poirier JP, Deutsch A, Hornemann U (2002) Experimental approach to generate shock veins in single crystal olivine by shear melting. Meteorit Planet Sci 37:1541–1553

    Article  Google Scholar 

  • Liou JG, Tsujimori T, Yang J, Zhang RY, Ernst WG (2014) Recycling of crustal materials through study of ultrahigh-pressure minerals in collisional orogens, ophiolites, and mantle xenoliths: a review. J Asian Earth Sci 96:386–420

    Article  Google Scholar 

  • Litasov KD, Ohtani E (2005) Phase relations in hydrous MORB at 18–28 GPa: implications for heterogeneity of the lower mantle. Phys Earth Planet Inter 150:239–263

    Article  Google Scholar 

  • Litasov KD, Ohtani E (2007) Effect of water on the phase relations in earth’s mantle and deep water cycle: advances in high-pressure mineralogy. Geol Soc Am Spec 421:115–156

    Google Scholar 

  • Litasov KD, Kagi H, Shatskiy A, Ohtani E, Lakshtanov DL, Bass JD, Ito E (2007) High hydrogen solubility in Al-rich stishovite and water transport in the lower mantle. Earth Planet Sci Lett 262:620–634

    Article  Google Scholar 

  • Liu X, Nishiyama N, Sanchira T, Inoue T, Higo Y, Sakamoto S (2006) Decomposition of kyanite and solubility of Al2O3 in stishovite at high pressure and high temperature conditions. Phys Chem Miner 33:711–721

    Article  Google Scholar 

  • Liu L, Zhang J, Green HW II, Jin Z, Bozhilov KN (2007) Evidence of former stishovite in metamorphosed sediments, implying subduction to > 350 km. Earth Planet Sci Lett 263:180–191

    Article  Google Scholar 

  • Martini JEJ (1978) Coesite and stishovite in the Vredefort Dome, South Africa. Nature 272:715–717

    Article  Google Scholar 

  • Martini JEJ (1991) The nature, distribution and genesis of the coesite and stishovite associated with the pseudotachylite of the Vredefort Dome, South Africa. Earth Planet Sci Lett 103:285–300

    Article  Google Scholar 

  • Melosh HJ (2013) The contact and compression stage of impact cratering. In: Osinski GR, Pierazzo E (eds) Impact cratering: processes and products. Blackwell, Oxford, pp 32–42

    Google Scholar 

  • Miyahara M, Ohtani E, Yamaguchi A, Ozawa S, Sakai T, Hirao N (2014) Discovery of coesite and stishovite in eucrite. PNAS 111:10939–10942

    Article  Google Scholar 

  • Nasdala L, Reiners PW, Garver JI, Kennedy AK, Stern RA, Balan E, Wirth R (2004) Incomplete retention of radiation damage in zircon from Sri Lanka. Am Mineral 89:219–231

    Article  Google Scholar 

  • Niida K, Green DH (1999) Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contrib Mineral Petrol 135:18–40

    Article  Google Scholar 

  • Ono S, Yasuda A (1996) Compositional change of majoritic garnet in a MORB composition from 7 to 17 GPa and 1400 to 1600 °C. Phys Earth Planet Inter 96:171–179

    Article  Google Scholar 

  • Panero WR (2006) Aluminium incorporation in stishovite. Geophys Res Lett 33:L20317. doi:10.1029/2006GL027425

    Article  Google Scholar 

  • Panero W, Benedetti L, Jeanloz R (2003) Transport of water into the lower mantle: role of stishovite. J Geophys Res Solid Earth 108:2039. doi:10.1029/2002JB002053

    Article  Google Scholar 

  • Pohl J, Stöffler D, Gall H, Ernstson K (1977) The Ries impact crater. In: Roddy DJ, Pepin RO, Merill RB (eds) Impact and explosion cratering. Pergamon Press, New York, pp 343–404

    Google Scholar 

  • Ringwood AE (1967) The pyroxene-garnet transformation in the earth’s mantle. Earth Planet Sci Lett 2:255–263

    Article  Google Scholar 

  • Ringwood AE, Major A (1966) High-pressure transformations in pyroxenes. Earth Planet Sci Lett 1:351–357

    Article  Google Scholar 

  • Ringwood AE, Major A (1971) Synthesis of majorite and other high pressure garnets and perovskites. Earth Planet Sci Lett 12:411–418

    Article  Google Scholar 

  • Rocholl A, Ovtcharova M, Schaltegger U, Wijbrans J, Pohl J, Harzhauser M, Prieto J, Ulbig A, Boehme M (2011) A precise and accurate “astronomical” age of the Ries impact crater, Germany: a cautious note on argon dating of impact material. Geophys Res 13:13322–13327 (Abstracts 13: EGU2011, EGU General Assembly 2011)

    Google Scholar 

  • Schmidt-Kaler H, Treibs W, Hüttner R (1970) Exkursionsführer zur geologischen Übersichtskarte des Rieses 1:100 000. Bayer Geol Landesamt, München, p 68

    Google Scholar 

  • Schwarz WH, Lippolt HJ (2014) 40Ar–39Ar step-heating of impact glasses from the Nördlinger Ries impact crater–Implications on excess argon in impact melts and tektites. Meteorit Planet Sci 49:1023–1036

    Article  Google Scholar 

  • Sharp TG, DeCarli PS (2006) Shock effects in meteorites. In: Lauretta DS, McSween HY Jr (eds) Meteorites and the early solar system II. University Arizona Press, Tucson, pp 653–677

    Google Scholar 

  • Spray JG (1998) Localized shock-and friction-induced melting in response to hypervelocity impact. In: Grady MM, Hutchinson R, McCall GJH, Rothery DA (eds) Meteorites: flux with time and impact effects. Geol Soc SP 140, London, pp 195–204

    Google Scholar 

  • Spray JG, Kelley SP, Rowley DB (1998) Evidence for a late triassic multiple impact event on earth. Nature 392:171–173

    Article  Google Scholar 

  • Spray JG, Butler HR, Thompson LM (2004) Tectonic influences on the morphometry of the sudbury impact structure: implications for terrestrial cratering and modeling. Meteorit Planet Sci 39:287–301

    Article  Google Scholar 

  • Spry A (1969) Metamorphic textures. Pergamon Press, Oxford, p 350

    Google Scholar 

  • Stachel T (2001) Diamonds from the asthenosphere and the transition zone. Eur J Mineral 13:883–892

    Article  Google Scholar 

  • Stähle V (1973) Cordierite glass formed by shock in a cordierite-garnet-gneiss from the Ries crater, Germany. Earth Planet Sci Lett 18:385–390

    Article  Google Scholar 

  • Stähle V, Altherr R, Koch M, Nasdala L (2004) Shock-induced formation of kyanite (Al2SiO5) from sillimanite within a dense metamorphic rock from the Ries crater (Germany). Contrib Mineral Petrol 148:150–159

    Article  Google Scholar 

  • Stähle V, Altherr R, Koch M, Nasdala L (2008) Shock-induced growth and metastability of stishovite and coesite in lithic clasts from suevite of the Ries impact crater (Germany). Contrib Mineral Petrol 155:457–472

    Article  Google Scholar 

  • Stähle V, Altherr R, Nasdala L, Ludwig T (2011) Ca-rich majorite derived from high-temperature melt and thermally stressed hornblende in shock veins of crustal rocks from the Ries impact crater (Germany). Contrib Mineral Petrol 161:275–291

    Article  Google Scholar 

  • Stettner G (1974) Das Grundgebirge in der Forschungsbohrung Nördlingen 1973 im regionalen Rahmen und seine Veränderungen durch den Impakt. Geol Bavar 72:35–51

    Google Scholar 

  • Stöffler D (1972) Deformation and transformation of rock-forming minerals by natural and experimental shock processes, I. Behavior of minerals under shock compression. Fortschr Mineral 49:50–113

    Google Scholar 

  • Stöffler D, Grieve RAF (2007) Impactites. In: Fettes D, Desmons J (eds) Metamorphic rocks: a classification and glossary of terms, Recommendations of the International Union of Geological Sciences. Subcommission on the Systematics oft Metamorphic Rocks. Cambridge University Press, Cambridge, pp 82–92

    Google Scholar 

  • Stöffler D, Keil K, Scott ERD (1991) Shock metamorphism of ordinary chondrites. Geochim Cosmochim Acta 55:3845–3867

    Article  Google Scholar 

  • Stöffler D, Artemieva NA, Pierazzo E (2002) Modeling the Ries–Steinheim impact event and the formation of the moldavite strewn field. Meteorit Planet Sci 37:1893–1907

    Article  Google Scholar 

  • Stöffler D, Artemieva NA, Wünnemann K, Reimold WU, Jacob J, Hansen BK, Summerson IAT (2013) Ries crater and suevite revisited–observations and modeling Part I: observations. Meteorit Planet Sci 48:515–589

    Article  Google Scholar 

  • Sumita T, Inoue T (1996) Melting experiments and thermodynamic analyses on silicate–H2O systems up to 12 GPa. Phys Earth Planet Inter 96:187–200

    Article  Google Scholar 

  • Tomioka N, Miyahara M (2017) High-pressure minerals in shocked meteorites. Meteorit Planet Sci 52:1–23. doi:10.1111/maps.12902

    Article  Google Scholar 

  • Tschauner O, Ma C (2017) Riesite, IMA 2015-110a. CNMNC Newsletter No. 35, February 2017: p 213. Mineral Mag 81:209–213

    Article  Google Scholar 

  • Tschauner O, Ma C, Lanzirotti A, Newville M (2017) Riesite, a new high pressure polymorph of TiO2 that forms upon shock-release—comparison to (Zr, Ti)O2 in pseudotachylites. Abstract Goldschmidt Conference 2017

  • van Roermund HLM, Drury MR (1998) Ultra-high pressure (P > 6 GPa) garnet peridotites in Western Norway: exhumation of mantle rocks from > 185 km depth. Terra Nova 10:295–301

    Article  Google Scholar 

  • von Engelhardt W, Stöffler D, Schneider W (1970) Petrologische Untersuchungen im Ries, 2nd edition. Geol Bavar 61:229–295

    Google Scholar 

  • Walton EL, Sharp TG, Hu J (2016) Frictional melting processes and the generation of shock veins in terrestrial impact structures: evidence from the Steen River impact structure, Alberta, Canada. Geochim Cosmochim Acta 180:256–270

    Article  Google Scholar 

  • Wijbrans CH, Rohrbach A, Klemme S (2016) An experimental investigation of the stability of majoritic garnet in the earth’s mantle and an improved majorite geobarometer. Contrib Mineral Petrol 171:50

    Article  Google Scholar 

  • Xie Z, Sharp TG, DeCarli PS (2006a) Estimating shock pressures based on high-pressure minerals in shock-induced melt veins of L chondrites. Meteorit Planet Sci 41:1883–1898

    Article  Google Scholar 

  • Xie Z, Sharp TG, DeCarli PS (2006b) High-pressure phases in a shock-induced melt vein of the Tenham L6 chondrite: constraints on shock pressure and duration. Geochim Cosmochim Acta 70:504–515

    Article  Google Scholar 

  • Xue X, Stebbins JF, Kanzaki M (1993) A 29Si MAS NMR study of sub-Tg amorphization of stishovite at ambient pressure. Phys Chem Miner 19:480–485

    Article  Google Scholar 

Download references

Acknowledgements

We thank Klaus Tschira Stiftung for support. Our thanks are also due to Ilona Fin and Oliver Wienand for preparing excellent polished thin sections and to Johannes Grimm and Hans-Peter Meyer for their assistance with EPMA analyses. Furthermore, we are grateful to Richard Norris for critical reading of the manuscript and helpful remarks. Careful reviews by Othmar Müntener and two anonymous reviewers are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Altherr.

Additional information

Communicated by Othmar Müntener.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stähle, V., Altherr, R., Nasdala, L. et al. Majoritic garnet grains within shock-induced melt veins in amphibolites from the Ries impact crater suggest ultrahigh crystallization pressures between 18 and 9 GPa. Contrib Mineral Petrol 172, 86 (2017). https://doi.org/10.1007/s00410-017-1404-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-017-1404-7

Keywords

Navigation