Skip to main content

Advertisement

Log in

Shock-induced growth and metastability of stishovite and coesite in lithic clasts from suevite of the Ries impact crater (Germany)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The microtextures of stishovite and coesite in shocked non-porous lithic clasts from suevite of the Ries impact structure were studied in transmitted light and under the scanning electron microscope. Both high-pressure silica phases were identified in situ by laser-Raman spectroscopy. They formed from silica melt as well as by solid-state transformation. In weakly shocked rocks (stage I), fine-grained stishovite (≤1.8 μm) occurs in thin pseudotachylite veins of quartz-rich rocks, where it obviously nucleated from high-pressure frictional melts. Generally no stishovite was found in planar deformation features (PDFs) within grains of rock-forming quartz. The single exception is a highly shocked quartz grain, trapped between a pseudotachylite vein and a large ilmenite grain, in which stishovite occurs within two sets of lamellae. It is assumed that in this case the small stishovite grains formed by the interplay of conductive heating and shock reverberation. In strongly shocked rocks (stages Ib–III, above ∼30 GPa), grains of former quartz typically contain abundant and variably sized stishovite (<6 μm) embedded within a dense amorphous silica phase in the interstices between PDFs. The formation of transparent diaplectic glass in adjacent domains results from the breakdown of stishovite and the transformation of the dense amorphous phase and PDFs to diaplectic glass in the solid state. Coesite formed during unloading occurs in two textural varieties. Granular micrometre-sized coesite occurs embedded in silica melt glass along former fractures and grain boundaries. These former high-pressure melt pockets are surrounded by diaplectic glass or by domains consisting of microcrystalline coesite and earlier formed stishovite. The latter is mostly replaced by amorphous silica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahrens TJ, Rosenberg ZT (1968) Shock metamorphism: experiments on quartz and plagioclase. In: French BM, Short NM (eds) Shock metamorphism of natural materials. Mono Book Corp, Baltimore, pp 59–81

    Google Scholar 

  • Akins JA, Ahrens TJ (2002) Dynamic compression of SiO2: a new interpretation. Geophys Res Lett 29:1394. doi:10.1029/2002GL014806

    Article  Google Scholar 

  • Ashworth JR, Schneider H (1985) Deformation and transformation in experimentally shock-loaded quartz. Phys Chem Mineral 11:241–249

    Article  Google Scholar 

  • Bassett WA, Barnett JD (1970) Isothermal compression of stishovite and coesite up to 85 kilobars at room temperature by X-ray diffraction. Phys Earth Planet Int 3:54–60

    Article  Google Scholar 

  • Boettger JC (1992) New model for the shock-induced α-quartz → stishovite phase transition in silica. J Appl Phys 72:5500–5508

    Article  Google Scholar 

  • Bowden E, Sharp TG, DeCarli PS (2000) Observations of possible kinetic effects on the shock metamorphism of quartz. Meteorit Planet Sci 35(Suppl):A31–A32

    Google Scholar 

  • Boyer H, Smith DC, Chopin C, Lasnier B (1985) Raman microprobe (RMP) determinations of natural and synthetic coesite. Phys Chem Mineral 12:45–48

    Google Scholar 

  • Brazhkin VV, Voloshin RN, Popova SV (1991) The kinetics of the transition of the metastable phases of SiO2, stishovite and coesite to the amorphous state. J Noncryst Solids 136:241–248

    Article  Google Scholar 

  • Champagnon B, Panczer G, Chemarin C, Humbert-Labeaumaz B (1996) Raman study of quartz amorphization by shock pressure. J Noncryst Solids 196:221–226

    Article  Google Scholar 

  • Chao ECT (1967) Impact metamorphism. In: Abelson PH (ed) Researches in geochemistry, vol 2. Wiley, New York, pp 204–233

    Google Scholar 

  • Chao ECT (1968) Pressure and temperature histories of impact metamorphosed rocks—based on petrographic observations. In: French BM, Short NM (eds) Shock metamorphism of natural materials. Mono Book Corp, Baltimore, pp 135–158

    Google Scholar 

  • Chao ECT, Littler J (1963) Additional evidence for the impact origin of the Ries Basin, Bavaria, Germany. Geol Soc Am Spec Paper, vol 73, 127 p

  • Chao ECT, Shoemaker EM, Madsen BM (1960) First natural occurrence of coesite. Science 132:220–222

    Article  Google Scholar 

  • Chao ECT, Fahey JJ, Littler J, Milton DJ (1962) Stishovite, SiO2, a very high pressure new mineral from Meteor Crater, Arizona. J Geophys Res 67:419–421

    Article  Google Scholar 

  • Chelikowsky JR, King HE Jr, Troullier N, Martins JL, Glinnemann J (1990) Structural properties of α-quartz near the amorphous transition. Phys Rev Lett 65:3309–3312

    Article  Google Scholar 

  • Coes L (1953) A new dense crystalline silica. Science 118:131–132

    Article  Google Scholar 

  • Cordier P, Gratz AJ (1995) TEM study of shock metamorphism in quartz from the Sedan nuclear test side. Earth Planet Sci Lett 129:163–170

    Article  Google Scholar 

  • Dachille F, Zeto RJ, Roy R (1963) Coesite and stishovite: stepwise reversal transformations. Science 140:991–993

    Article  Google Scholar 

  • DeCarli PS, Milton DJ (1965) Stishovite: synthesis by shock wave. Science 147:144–145

    Article  Google Scholar 

  • DeCarli PS, Bowden E, Jones AP, Price GD (2002) Laboratory impact experiments versus natural impact events. Geol Soc Am Spec Paper 356:595–605

    Google Scholar 

  • Dressler B, Graup G (1969) Pseudotachylite aus dem Nördlinger Ries. Geol Bav 60:170–171

    Google Scholar 

  • El Goresy A, Gillet P, Chen M, Künstler F, Graup G, Stähle V (2001a) In situ discovery of shock-induced graphite-diamond phase transition in gneisses from the Ries Crater, Germany. Am Mineral 86:611–621

    Google Scholar 

  • El Goresy A, Chen M, Gillet P, Dubrovinsky L, Graup G, Ahuja R (2001b) A natural shock-induced dense polymorph of rutile with α-PbO2 structure in the suevite from the Ries crater in Germany. Earth Planet Sci Lett 192:485–495

    Article  Google Scholar 

  • El Goresy A, Chen M, Dubrovinsky L, Gillet P, Graup G (2001c) An ultradense polymorph of rutile with seven-coordinated titanium from the Ries Crater. Science 293:1467–1470

    Article  Google Scholar 

  • El Goresy A, Dubrovinsky L, Sharp TG, Chem M (2004) Stishovite and post-stishovite polymorphs of silica in the shergotty meteorite: their nature, petrographic settings versus theoretical predictions and relevance to Earth’s mantle. J Phys Chem Solids 65:1597–1608

    Article  Google Scholar 

  • Etchepare J, Merian M, Smetankine L (1974) Vibrational normal modes of SiO2. I. α and β quartz. J Chem Phys 60:1873–1876

    Article  Google Scholar 

  • Fiske PS, Nellis WJ, Xu Z, Stebbins JF (1998) Shocked quartz: a 29Si magic-angle-spinning nuclear magnetic resonance study. Am Mineral 83:1285–1292

    Google Scholar 

  • French BM (1998) Traces of catastrophe: a handbook of shock-metamorphic effects in terrestrial meteorite impact structures. LPI Contrib No 954, Lunar Planetary Institute, Houston, 120 p

  • Gigl PD, Dachille F (1968) Effects of pressure and temperature on the reversal transitions of stishovite. Meteoritics 4:123–136

    Google Scholar 

  • Goltrant O, Leroux H, Doukhan J-C, Cordier P (1992) Formation mechanisms of planar deformation features in naturally shocked quartz. Phys Earth Planet Int 74:219–240

    Article  Google Scholar 

  • Grady DE (1980) Shock deformation of brittle solids. J Geophys Res 85:913–924

    Article  Google Scholar 

  • Grady DE, Murri WJ, DeCarli PS (1975) Hugoniot sound velocities and phase transformations in two silicates. J Geophys Res 80:4857–4861

    Article  Google Scholar 

  • Gratz AJ (1984) Deformation in laboratory-shocked quartz. J Noncryst Solids 67:543–558

    Article  Google Scholar 

  • Gratz AJ, Tyburczy J, Christie J, Ahrens T, Pongratz P (1988) Shock metamorphism of deformed quartz. Phys Chem Mineral 16:221–233

    Google Scholar 

  • Gratz AJ, Nellis WJ, Christie JM, Brocious W, Swegle J, Cordier P (1992) Shock metamorphism of quartz with initial temperatures −170 to +1000°C. Phys Chem Mineral 19:267–288

    Google Scholar 

  • Grieve RAF, Robertson PB (1976) Variations in shock deformation at the Slate Islands impact structure, Lake Superior, Canada. Contrib Mineral Petrol 58:37–49

    Article  Google Scholar 

  • Grieve RAF, Langenhorst F, Stöffler D (1996) Shock metamorphism of quartz in nature and experiment: II. Significance in geoscience. Meteorit Planet Sci 31:6–35

    Google Scholar 

  • Gucsik A, Koeberl C, Brandstätter F, Libowitzky E, Reimold WU (2003) Scanning electron microscopy, cathodoluminescence, and Raman spectroscopy of experimentally shock-metamorphosed quartzite. Meteorit Planet Sci 38:1187–1197

    Google Scholar 

  • Heider N, Kenkmann T (2003) Numerical simulation of temperature effects at fissures due to shock loading. Meteorit Planet Sci 38:1451–1460

    Google Scholar 

  • Hemley RJ, Mao HK, Chao ECT (1986a) Raman spectrum of natural and synthetic stishovite. Phys Chem Mineral 13:285–290

    Article  Google Scholar 

  • Hemley RJ, Mao HK, Bell PM, Mysen BO (1986b) Raman spectroscopy of SiO2 glass at high pressure. Phys Rev Lett 57:747–750

    Article  Google Scholar 

  • Hemley RJ, Jephcoate AP, Mao HK, Ming LC, Manghnani MH (1988) Pressure-induced amorphization of crystalline silica. Nature 334:52–54

    Article  Google Scholar 

  • Hemley RJ, Prewitt CT, Kingma KJ (1994) High-pressure behavior of silica. In: Heaney PJ, Prewitt CT, Gibbs GV (eds) Silica—physical behavior, geochemistry and materials applications. Rev Mineral 29, Mineral Soc Am, Washington DC, pp 41–81

  • Huffman AR, Reimold WU (1996) Experimental constraints on shock-induced microstructures in naturally deformed silicates. Tectonophysics 256:165–217

    Article  Google Scholar 

  • Jeanloz R (1980) Shock effects in olivine and implications for Hugoniot data. J Geophys Res 85:3163–3176

    Article  Google Scholar 

  • Jin W, Kalia RK, Vashishta P, Rino JP (1993) Structural transformation, intermediate-range order and dynamical behavior of SiO2 glass at high pressures. Phys Rev Lett 71:3146–3149

    Article  Google Scholar 

  • Kieffer SW (1971) Shock metamorphism of the Coconino sandstone at Meteor Crater, Arizona. J Geophys Res 76:5449–5473

    Article  Google Scholar 

  • Kieffer SW, Phakey PP, Christie JM (1976) Shock processes in porous quartzite: transmission electron microscope observations and theory. Contrib Mineral Petrol 59:41–93

    Article  Google Scholar 

  • Kingma KJ, Meade C, Hemley RJ, Mao H-K, Veblen DR (1993) Microstructural observations of α-quartz amorphization. Science 259:666–669

    Google Scholar 

  • Kleeman JD, Ahrens TJ (1973) Shock-induced transition of quartz to stishovite. J Geophys Res 78:5954–5960

    Article  Google Scholar 

  • Koeberl C (2002) Mineralogical and goechemical aspects of impact craters. Mineral Mag 66:745–768

    Article  Google Scholar 

  • Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279

    Google Scholar 

  • Langenhorst F (1994) Shock experiments on pre-heated α- and β-quartz: II. X-ray and TEM investigations. Earth Planet Sci Lett 128:683–698

    Article  Google Scholar 

  • Langenhorst F (2003) Nanostructures in ultrahigh-pressure metamorphic coesite and diamond: a genetic fingerprint. Mitt Österr Miner Ges 148:401–402

    Google Scholar 

  • Leroux H (2005) Weathering features in shocked quartz from the Ries impact crater, Germany. Meteorit Planet Sci 40:1347–1352

    Google Scholar 

  • Leroux H, Reimold WU, Doukhan J-C (1994) A TEM investigation of shock metamorphism in quartz from the Vredefort dome, South Africa. Tectonophysics 230:223–239

    Article  Google Scholar 

  • Luo S-N, Ahrens TJ, Asimow PD (2003) Polymorphism, superheating, and amorphization of silica upon shock wave loading and release. J Geophys Res 108(B9):2421. doi:10.1029/2002JB2317

    Article  Google Scholar 

  • Maddock RH (1983) Melt origin of fault-generated pseudotachylites demonstrated by textures. Geology 11:105–108

    Article  Google Scholar 

  • Martini JEJ (1978) Coesite and stishovite in the Vredefort Dome, South Africa. Nature 272:715–717

    Article  Google Scholar 

  • Martini JEJ (1991) The nature, distribution and genesis of the coesite and stishovite associated with the pseudotachylite of the Vredefort Dome, South Africa. Earth Planet Sci Lett 103:285–300

    Article  Google Scholar 

  • Mashimo T, Nishii K, Soma T, Sawaoka A (1980) Some physical properties of amorphous SiO2 synthesized by shock compression of α-quartz. Phys Chem Mineral 5:367–377

    Article  Google Scholar 

  • McMillan PF, Wolf GH, Lambert P (1992) A Raman spectroscopic study of shocked single crystalline quartz. Phys Chem Mineral 19:71–79

    Google Scholar 

  • McQueen RG, Fritz JN, Marsh SP (1963) On the equation of state of stishovite. J Geophys Res 68:2319–2322

    Article  Google Scholar 

  • Meade C, Hemley RJ, Mao HK (1992) High-pressure X-ray diffraction of SiO2 glass. Phys Rev Lett 69:1387–1390

    Article  Google Scholar 

  • Melosh HJ (1985) Ejection of rock fragments from planetary bodies. Geology 13:144–148

    Article  Google Scholar 

  • Müller WF (1969) Elektronenmikroskopischer Nachweis amorpher Bereiche in stoßwellenbeanspruchtem Quarz. Naturwiss 56:279

    Article  Google Scholar 

  • Nasdala L, Reiners PW, Garver JI, Kennedy AK, Stern RA, Balan E, Wirth R (2004) Incomplete retention of radiation damage in zircon from Sri Lanka. Am Mineral 89:219–231

    Google Scholar 

  • Okuno M, Reynard B, Shimada Y, Syono Y, Willaime C (1999) A Raman spectroscopic study of shock-wave densification of vitreous silica. Phys Chem Mineral 26:304–311

    Article  Google Scholar 

  • Ostroumov M, Faulques E, Lounejeva E (2002) Raman spectroscopy of natural silica in Chicxulub impactite, Mexico. Compt Rend Geosci 334:21–26

    Article  Google Scholar 

  • Pohl J, Angenheister G (1969) Anomalien des Erdmagnetfeldes und Magnetisierung der Gesteine im Nördlinger Ries. Geol Bav 61:327–336

    Google Scholar 

  • Pohl J, Stöffler D, Gall H, Ernstson K (1977) The Ries impact crater. In: Roddy DJ, Pepin RO, Merill RB (eds) Impact and explosion cratering. Pergamon, New York, pp 343–404

    Google Scholar 

  • Schmitt DR, Ahrens TJ (1989) Shock temperatures in silica glass: implications for modes of shock-induced deformation, phase transformation, and melting with pressure. J Geophys Res 94:5851–5871

    Article  Google Scholar 

  • Shoemaker EM, Chao ECT (1961) New evidence for the impact origin of the Ries Basin, Bavaria, Germany. J Geophys Res 66:3371–3378

    Article  Google Scholar 

  • Skinner BJ, Fahey JJ (1963) Observations on the inversion of stishovite to silica glass. J Geophys Res 68:5595–5604

    Google Scholar 

  • Spray JG (1998) Localized shock- and friction-induced melting in response to hypervelocity impact. In: Grady MM, Hutchinson R, McCall GJH, Rothery DA (eds) Meteorites: flux with time and impact effects. Geol Soc London Spec Publ 140, London, pp 195–204

  • Stähle V, Altherr R, Koch M, Nasdala L (2004) Shock-induced formation of kyanite (Al2SiO5) from sillimanite within a dense metamorphic rock from the Ries crater (Germany). Contrib Mineral Petrol 148:150–159

    Article  Google Scholar 

  • Stishov SM, Popova SV (1961) A new modification of silica. Geochemistry 10:923–926

    Google Scholar 

  • Stöffler D (1971a) Coesite and stishovite in shocked crystalline rocks. J Geophys Res 76:5474–5488

    Article  Google Scholar 

  • Stöffler D (1971b) Progressive metamorphism and classification of shocked and brecciated crystalline rocks at impact craters. J Geophys Res 76:5541–5551

    Article  Google Scholar 

  • Stöffler D (1972) Deformation and transformation of rock-forming minerals by natural and experimental shock processes. I. Behavior of minerals under shock compression. Fortschr Miner 49:50–113

    Google Scholar 

  • Stöffler D (1984) Glasses formed by hypervelocity impact. J NonCryst Solids 67:465–502

    Article  Google Scholar 

  • Stöffler D, Langenhorst F (1994) Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory. Meteoritics 29:155–181

    Google Scholar 

  • Stolper EM, Ahrens TJ (1987) On the nature of pressure-induced coordination changes in silicate melts and glasses. Geophys Res Lett 14:1231–1233

    Article  Google Scholar 

  • Tan H, Ahrens TJ (1990) Shock induced polymorphic transition in quartz, carbon, and boron nitride. J Appl Phys 67:217–224

    Article  Google Scholar 

  • Teter DM, Hemley RJ, Kresse G, Hafner J (1998) High pressure polymorphism in silica. Phys Rev Lett 80:2145–2148

    Article  Google Scholar 

  • Trepmann CA, Spray JG (2006) Shock-induced crystal-plastic deformation and post-shock annealing of quartz: microstructural evidence from crystalline target rocks of the Charlevoix impact structure, Canada. Eur J Mineral 18:161–173

    Article  Google Scholar 

  • Tschauner O, Luo S-N, Asimow PD, Ahrens TJ (2006) Recovery of stishovite-structure at ambient conditions out of shock-generated amorphous silica. Am Mineral 91:1857–1862

    Article  Google Scholar 

  • Turtle EP, Pierazzo E, Collins GS, Osinski GR, Melosh HJ, Morgan JV, Reimold WU (2005) Impact structures: what does crater diameter mean? In: Kenkmann T, Hörz F, Deutsch A (eds) Large meteorite impacts III. Geol Soc Am Spec Paper 384, Boulder, pp 1–24

  • von Engelhardt W (1997) Suevite breccia of the Ries impact crater, Germany: petrography, chemistry and shock metamorphism of crystalline rock clasts. Meteorit Planet Sci 32:545–554

    Article  Google Scholar 

  • von Engelhardt W, Bertsch W (1969) Shock induced planar deformation structures in quartz from the Ries Crater, Germany. Contrib Mineral Petrol 20:203–234

    Article  Google Scholar 

  • von Engelhardt W, Stöffler D (1968) Stages of shock metamorphism in the crystalline rocks of the Ries Basin, Germany. In: French BM, Short NM (eds) Shock metamorphism of natural materials. Mono Book Corp, Baltimore, pp 159–168

    Google Scholar 

  • von Engelhardt W, Arndt J, Stöffler D, Müller WF, Jeziorkowski H, Gubser RA (1967) Diaplektische Gläser in den Breccien des Ries von Nördlingen als Anzeichen für Stoßwellenmetamorphose. Contrib Mineral Petrol 15:93–102

    Article  Google Scholar 

  • von Engelhardt W, Stöffler D, Schneider W (1969) Petrologische Untersuchungen im Ries. Geol Bav 61:229–295

    Google Scholar 

  • Wackerle J (1962) Shock-wave compression of quartz. J Appl Phys 33:922–937

    Article  Google Scholar 

  • Walzebuck JP, von Engelhardt W (1979) Shock deformation of quartz influenced by grain size and shock direction: observations on quartz-plagioclase rocks from the basement of the Ries Crater, Germany. Contrib Mineral Petrol 70:267–271

    Article  Google Scholar 

  • White JC (1993) Shock-induced melting and silica polymorph formation, Vredefort Structure, South Africa. In: Boland JN, Fitz Gerald JD (eds) Defects and processes in the solid state: geoscience applications—the McLaren volume. Developments in petrology, vol 14. Elsevier, Amsterdam, pp 69–84

  • Whitehead J, Spray JG, Grieve RAF (2002) Origin of “toasted” quartz in terrestrial impact structures. Geology 30:431–434

    Article  Google Scholar 

  • Xue X, Stebbins JF, Kanzaki M (1993) A 29Si MAS NMR study of sub-T g amorphization of stishovite at ambient pressure. Phys Chem Mineral 19:480–485

    Google Scholar 

Download references

Acknowledgments

Ronald Miletich is thanked for fruitful discussions on structural aspects of silica polymorphs and kinetic aspects of silica phase transitions. We are grateful to Melanie Kaliwoda for her assistance during electron microprobe analyses and to Emily W. Zack for her improvement of the English style. Ilse Glass and Oleksandr Varychev are thanked for their assistance during extensive SEM work. Our thanks are also due to Ilona Fin and Oliver Wienand for preparing excellent polished thin sections. Careful reviews by John Spray, Dieter Stöffler and an anonymous colleague helped to substantially improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Stähle.

Additional information

Communicated by J. Hoefs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stähle, V., Altherr, R., Koch, M. et al. Shock-induced growth and metastability of stishovite and coesite in lithic clasts from suevite of the Ries impact crater (Germany). Contrib Mineral Petrol 155, 457–472 (2008). https://doi.org/10.1007/s00410-007-0252-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-007-0252-2

Keywords

Navigation