Skip to main content
Log in

NanoSIMS mapping and LA-ICP-MS chemical and U–Th–Pb data in monazite from a xenolith enclosed in andesite (Central Slovakia Volcanic Field)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

In this study, we use NanoSIMS element and isotope ratio mapping and LA-ICP-MS trace element measurements to elucidate the origins of monazites from a restitic xenolith enclosed in a 13.5 ± 0.3 Ma andesitic lava (Slovakia). The xenolith/lava interaction is mainly characterized by the growth of a plagioclase-bearing corona around the xenolith and magmatic garnet overgrowths on primary metamorphic garnets within the xenolith. NanoSIMS images (89Y, 139La, 208Pb, 232Th and 238U) and trace element analyses indicate that variations of HREE, Y and Eu contents in the monazite are correlated with the resorption and the following overgrowth of garnet and plagioclase in the xenolith. Three domains are distinguished in the monazite grains: the inherited Variscan core at ca. 310 Ma (M1 domain) characterized by low Y and HREE contents and a weak negative Eu anomaly; the inner rim (M2 domain) crystallized during the growth of the plagioclase magmatic corona (large negative Eu anomaly) and the resorption of metamorphic garnet (high HREE and Y contents); and the external rim (M3 domain) crystallized during the growth of the plagioclase corona (large negative Eu anomaly) and during the crystallization of magmatic garnet (low Y, HREE contents) at ~13 Ma, i.e. the age of the andesitic lava. The age and chemical zonation of the monazites attest to the preservation of primary monazite in the xenolith despite the interaction with the andesite lava. NanoSIMS imaging provides high-quality sub-µm scale images of the monazite that reveals chemical domains that were not distinguishable on WDS X-ray maps, especially for depleted elements such as U and Pb. Owing to its small size, the M2 domain could not be accurately dated by the LA-ICP-MS method. However, NanoSIMS isotopic maps reveal that the M2 domain has similar 208Pb/232Th isotope ratios to the M3 domain and thus similar ages. These results support the hypothesis that melt-assisted partial dissolution–precipitation in monazite efficiently records chemical and mineralogical changes during xenolith/lava interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alonso-Perez R, Müntener O, Ulmer P (2009) Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids. Contrib Mineral Petrol 157:541–558

    Article  Google Scholar 

  • Appel K, Appel P, Martinez-Criado G, Mocek B, Möller A (2010) Elemental nano-imaging of monazite and zircon using SR XRF. Acta Mineral Petrogr Abstr Ser 6:674

    Google Scholar 

  • Ayers JC, Miller C, Gorisch B, Milleman J (1999) Textural development of monazite during high-grade metamorphism: hydrothermal growth kinetics, with implications for U, Th–Pb geochronology. Am Mineral 84:1766–1780

    Google Scholar 

  • Ayers JC, DelaCruz K, Miller C, Switzer O (2003) Experimental study of zircon coarsening in quartzite ± H2O at 1.0 GPA and 1000 °C, with implications for geochronological studies of high-grade metamorphism. Am Mineral 88:365–376

    Article  Google Scholar 

  • Berger A, Gnos E, Janots E, Fernandez A, Giese J (2008) Formation and composition of rhabdophane, bastnäsite and hydrated thorium minerals during alteration: implications for geochronology and low-temperature processes. Chem Geol 254:238–248

    Article  Google Scholar 

  • Berger A, Rosenberg C, Schaltegger U (2009) Stability and isotopic dating of monazite and allanite in partially molten rocks: examples from the Central Alps. Swiss J Geosci 102:15–29

    Article  Google Scholar 

  • Bingen B, Demaiffe D, Hertogen J (1996) Redistribution of rare earth elements, thorium, and uranium over accessory minerals in the course of amphibolite to granulite facies metamorphism: the role of apatite. Geochim Cosmochim Acta 60:1341–1354

    Article  Google Scholar 

  • Bohlen SR, Wall WJ, Boettcher AL (1983) Experimental investigation and application of garnet granulite equilibria. Contrib Mineral Petrol 83:52–61

    Article  Google Scholar 

  • Bosse V, Boulvais P, Gautier P, Tiepolo M, Ruffet G, Devidal JL, Cherneva Z, Gerdjikov I, Paquette JL (2009) Fluid-induced disturbance of the monazite Th–Pb chronometer: in situ dating and element mapping in pegmatites from the Rhodope (Greece, Bulgaria). Chem Geol 261:286–302

    Article  Google Scholar 

  • Bouloton J, Paquette JL (2014) In situ U–Pb zircon geochronology of Neogen garnet-bearing lavas from Slovakia (Carpatho-Pannonian region, Central Europe). Lithos 184(187):17–26

    Article  Google Scholar 

  • Catlos EJ, Gilley LD, Harrison TM (2002) Interpretation of monazite ages obtained via in situ analysis. Chem Geol 188:193–215

    Article  Google Scholar 

  • Cherniak DJ, Watson BE, Grove M, Harrison TM (2004) Pb diffusion in monazite: a combined RBS/SIMS study. Geochim Cosmochim Acta 68:829–840

    Article  Google Scholar 

  • Crowley JL, Ghent ED (1999) An electron microprobe study of the U–Th–Pb systematics of metamorphosed monazite: the role of Pb diffusion versus overgrowth and recrystallization. Chem Geol 157:285–302

    Article  Google Scholar 

  • Cruz MJ, Cunha JC, Merlet C, Sabaté P (1996) Dataçao pontual das monazitas da regiao de Itambe, Bahia, através da microssonda electronica. XXXIX Congresso Brasileiro de Geologia, pp 206–209

  • Didier A, Bosse V, Boulvais P, Bouloton J, Paquette JL, Montel JM, Devidal JL (2013) Disturbance versus preservation of U–Th–Pb ages in monazite during fluid–rock interaction: textural, chemical and isotopic in situ study in microgranites (Velay Dome, France). Contrib Mineral Petrol 165:1051–1072

    Article  Google Scholar 

  • Didier A, Bosse V, Cherneva Z, Gautier P, Georgieva M, Paquette JL, Gerdjikov I (2014) Syn-deformation fluid-assisted growth of monazite during renewed high-grade metamorphism in metapelites of the Central Rhodope (Bulgaria, Greece). Chem Geol 381:206–222

    Article  Google Scholar 

  • Eggler DH (1972) Water-saturated and undersaturated melting relations in a Paricutin andesite and an estimate of water content in the natural magma. Contrib Mineral Petrol 34:261–271

    Article  Google Scholar 

  • Ellison AJG, Hess PC (1988) Peraluminous and peralkaline effects upon “monazite” solubility in high-silica liquids. EOS Trans 69:498

    Google Scholar 

  • Erickson TM, Pearce MA, Cavosie AJ, Timms NE, Reddy SM, Taylor RJ, Clark C (2014) Resolving shock features in monazite using EBSD and their effects on SHRIMP U–Pb systematics. Goldschmidt 2014 conference abstract

  • Fletcher IR, McNaughton NJ, Davis WJ, Rasmussen B (2010) Matrix effects and calibration limitations in ion probe U–Pb and Th–Pb dating of monazite. Chem Geol 270:31–44

    Article  Google Scholar 

  • Foster G, Kinny P, Vance D, Prince C, Harris N (2000) The significance of monazite U–Th–Pb age data in metamorphic assemblages; a combined study of monazite and garnet chronometry. Earth Planet Sci Lett 181:237–340

    Article  Google Scholar 

  • Gardés E, Jaoul O, Montel JM, Seydoux-Guillaume AM, Wirth R (2006) Pb diffusion in monazite: an experimental study of interdiffusion. Geochim Cosmochim Acta 70:2325–2336

    Article  Google Scholar 

  • Gasquet D, Bertrand JM, Paquette JL, Lehmann J, Ratzov G, De Ascenc Guedes R, Tiepolo M, Boullier AM, Scaillet S, Nomade S (2010) Miocene to Messinian deformation and hydrothermalism in the Lauzière Massif (French Western Alps): new U–Th–Pb and Argon ages. Bull Soc Géol Fr 181:227–241

    Article  Google Scholar 

  • Gill JB (1981) Orogenic andesites and plate tectonics. Springer, Berlin

    Book  Google Scholar 

  • Hamilton DL, Burnham CW, Osborne E (1964) The solubility of water and effects of oxygen fugacity and water content on crystallization in mafic magmas. J Petrol 5:21–39

    Article  Google Scholar 

  • Harangi S, Downes H, Thirlwall M, Gmeling K (2007) Geochemistry, petrogenesis and geodynamic relationships of miocene calc-alkaline volcanic rocks in the Western carpathian Arc, Eastern Central Europe. J Petrol 48:2261–2287

    Article  Google Scholar 

  • Hermann J, Rubatto D (2003) Relating zircon and monazite domains to garnet growth zones: age and duration of granulite facies metamorphism in the Val Malenco lower crust. J Metamorph Geol 21:833–852

    Article  Google Scholar 

  • Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole–plagioclase thermometry. Contrib Mineral Petrol 116:433–447

    Article  Google Scholar 

  • Holland T, Powell R (2001) Calculation of phase relations involving haplogranitic melts using an internally consistent thermodynamic dataset. J Petrol 42:673–683

    Article  Google Scholar 

  • Janots E, Engi M, Berger A, Allaz J, Schwarz JO, Spandler C (2008) Prograde metamorphic sequence of REE minerals in politic rocks of the Central Alps: implications for allanite–monazite–xenotime phase relations from 250 to 610 °C. J Metam Geol 26:509–526

    Article  Google Scholar 

  • Jercinovic MJ, Williams ML, Allaz J, Donovan JJ (2011) Trace analysis in EMPA. European Workshop on Modern developments and applications in microbeam analysis. Anger, France

  • Joesten RL (1991) Kinetics of coarsening and diffusion-controlled mineral growth. In: Kerrick DM (ed) Contact metamorphism, 26. Reviews in Mineralogy, Mineralogical Society of America, Washington, DC, pp 507–582

    Google Scholar 

  • Kelly NM, Harley SL, Möller A (2012) Complexity in the behavior and recrystallization of monazite during high-T metamorphism and fluid infiltration. Chem Geol 322–323:192–208

    Article  Google Scholar 

  • Konecny V, Lexa J, Hojstricova V (1995) The central Slovakia neogene volcanic field: a review. Acta Vulc 7:63–78

    Google Scholar 

  • Konečný V, Bagdasarjan GP, Vass D (1969) Evolution of Neogene volcanism in Central Slovakia and its confrontation with absolute ages. Acta Geol Acad Sci Hung 13:245–258

    Google Scholar 

  • Krenn E, Finger F (2007) Formation of monazite and rhabdophane at the expense of allanite during Alpine low temperature retrogression of metapelitic basement rocks from Crete, reece: microprobe data and geochronological implications. Lithos 95:130–147

    Article  Google Scholar 

  • Kriegsman LM, Hensen BJ (1998) Back reaction between restite and melt: implications for geothermobarometry and pressure–temperature paths. Geology 26:1111–1114

    Article  Google Scholar 

  • Maluski H, Rajlich P, Matte P (1993) 40Ar–39Ar dating of the Inner Carpathians Variscan basement and Alpine mylonitic overprinting. Tectonophysics 223:313–337

    Article  Google Scholar 

  • Moecher DP, Essene EJ, Anovitz LM (1988) Calculation and application of clinopyroxene–garnet–plagioclase–quartz geobarometers. Contrib Mineral Petrol 100:92–106

    Article  Google Scholar 

  • Montel JM, Foret S, Veschambre M, Nicollet C, Provost A (1996) Electron microprobe dating of monazite. Chem Geol 131:37–53

    Article  Google Scholar 

  • Paquette JL, Tiepolo M (2007) High resolution (5 μm) U–Th–Pb isotope dating of monazite with excimer laser ablation (ELA)-ICPMS. Chem Geol 240:222–237

    Article  Google Scholar 

  • Pécskay Z, Lexa J, Szakáca A, Seghedi I, Balogh K, Konečný V, Zelenka T, Kovacs M, Póka T, Fülöp A, Márton E, Panaiotu C, Cvetkovic V (2006) Geochronology of Neogene magmatism in the Carpathian arc and Intra-Carpathian area. Geol Carpath 57:511–530

    Google Scholar 

  • Perkins D, Chipera SJ (1985) Garnet–orthopyroxene–plagioclase–quartz barometry: refinement and application to the English River subprovince and the Minnesota River valley. Contrib Mineral Petrol 89:69–80

    Article  Google Scholar 

  • Powell R, Holland TJ (1994) Optimal geothermometry and geobarometry. Am Mineral 79:120–133

    Google Scholar 

  • Putnis A (2009) Mineral replacement reactions. Rev Mineral 70:87–124

    Article  Google Scholar 

  • Putnis A, Austrheim H (2010) Fluid-induced processes: metasomatism and metamorphism. Geofluids 10:254–269

    Google Scholar 

  • Pyle J, Spear F (2003) Four generations of accessory-phase growth in low-pressure migmatites from SW New Hampshire. Am Mineral 88:338–351

    Article  Google Scholar 

  • Rapp RP, Watson EB (1986) Monazite solubility and dissolution kinetics: implications for the thorium and light rare earth chemistry of felsic magmas. Contrib Mineral Petrol 94:304–316

    Article  Google Scholar 

  • Rasmussen B, Fletcher IR, Muhling JR (2007) In situ U–Pb dating and element mapping of three generations of monazite: unravelling cryptic tectonothermal events in low-grade terranes. Geochim Cosmochim Acta 71:670–690

    Article  Google Scholar 

  • Rubatto D, Chakraborty S, Dasgupta S (2013) Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology. Contrib Mineral Petrol 165:349–372

    Article  Google Scholar 

  • Seghedi I (2010) Miocen-recent magmatism and geodynamic processes in the Carpathian–Pannonian region, relations with Balkan and Aegen region. XIX Congress of the Carpathian–Balkan geological association. Geol Balc 38(1–2):9–10

    Google Scholar 

  • Seydoux-Guillaume AM, Paquette JL, Wiedenbeck M, Montel JM, Heinrich W (2002) Experimental resetting of the U–Th–Pb systems in monazite. Chem Geol 191:165–181

    Article  Google Scholar 

  • Seydoux-Guillaume AM, Goncalves P, Wirth R, Deutsch A (2003) Transmission electron microscope study of polyphase and discordant monazites: site-specific specimen preparation using the focused ion beam technique. Geology 31:973–976

    Article  Google Scholar 

  • Seydoux-Guillaume AM, Montel JM, Bingen B, Bosse V, de Parseval P, Paquette JL, Wirth R (2012) Low-temperature alteration of monazite: fluid mediated coupled dissolution–precipitation, irradiation damage, and disturbance of the U–Pb and Th–Pb chronometers. Chem Geol 330–331:140–158

    Article  Google Scholar 

  • Spear FS (2010) Monazite–allanite phase relations in metapelites. Chem Geol 279:55–62

    Article  Google Scholar 

  • Spear FS, Pyle JM (2002) Apatite, monazite, and xenotime in metamorphic rocks, reviews in mineralogy and geochemistry, phosphates: geochemical, geobiological, and materials importance. Rev Mineral 48:523–558

    Article  Google Scholar 

  • Szabó C, Harangi S, Csontos L (1992) Review of Neogene and Quaternary volcanism of the Carpathian–Pannonian region. Tectonophysics 208:243–256

    Article  Google Scholar 

  • Townsend KJ, Miller CF, D’Andrea JL, Ayers JC, Harrison TM, Coath CD (2001) Low temperature replacement of monazite in the Ireteba granite, Southern Nevada: geochronological implications. Chem Geol 172:95–112

    Article  Google Scholar 

  • Valley JW, Cavosie AJ, Ushikubo T, Reinhard DA, Lawrence DF, Larson DJ, Clifton PH, Kelly TF, Wilde SA, Moser DE, Spicuzza MJ (2014) Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nat Geosci 7:219–223

    Article  Google Scholar 

  • van Achterberg E, Ryan CG, Jackson SE, Griffin W (2001) Data reduction software for LA-ICP-MS. In: Sylvester P (Ed.), Laser ablation-ICPMS in the Earth Science, vol 29. Mineralogical Association of Canada, pp 239–243

  • Zhu XK, O’Nions RK (1999) Zonation of monazite in metamorphic rocks and its implications for high temperature thermochronology: a case study from the Lewisian terrain. Earth Planet Sci Lett 171:209–220

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are due to Jean-Marc Hénot for his help in the use of SEM, Emily Mullen for English corrections and O. Laurent for fruitful discussion. The paper has been greatly improved by the critical and constructive comments of Alexander Stepanov and an anonymous reviewer. This work is supported a posteriori by CNRS-INSU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Didier.

Additional information

Communicated by Franck Poitrasson.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Didier, A., Bosse, V., Bouloton, J. et al. NanoSIMS mapping and LA-ICP-MS chemical and U–Th–Pb data in monazite from a xenolith enclosed in andesite (Central Slovakia Volcanic Field). Contrib Mineral Petrol 170, 45 (2015). https://doi.org/10.1007/s00410-015-1200-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1200-1

Keywords

Navigation