Skip to main content

Advertisement

Log in

Influence of stress and strain on dolomite rim growth: a comparative study

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Triaxial compression and torsion experiments were performed to investigate the influence of non-isostatic stress and strain on dolomite reaction rim growth using orientated natural calcite and magnesite single crystals at a temperature of 750 °C, 400 MPa confining pressure, stresses between 7 and 38 MPa, and test durations up to 171 h. Reaction products were composed of a polycrystalline magnesio-calcite layer, palisade-shaped dolomite, and granular dolomite grains. In all experiments, inelastic deformation was partitioned into calcite and reaction products, while magnesite remained undeformed. Calcite deformed by twinning and dislocation creep, where the activation of additional glide systems at high stress allowed high strain. Depending on grain size, magnesio-calcite deformed by diffusion creep and/or grain boundary sliding, twinning, and dislocation creep. Dolomite deformed mainly by diffusion creep, assisted by enhanced dislocation activity allowing Ca enrichment in the granular rim. A weak crystallographic preferred orientation of the reaction products was observed. In triaxial compression, dolomite rim growth was diffusion-controlled and showed no influence of axial stresses up to 38 MPa on the reaction kinetics. At high strain (>0.1), the magnesio-calcite layer is wider suggesting faster growth kinetics. This may be related to additional diffusion pathways provided by enhanced dislocation activity. At very high strain (>0.3–0.6), twisted samples showed a gradual decrease in layer thickness of dolomite and magnesio-calcite with increasing strain (-rate).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Barber DJ, Wenk HR (2001) Slip and dislocation behavior in dolomite. Eur J Mineral 13:221–243. doi:10.1127/0935-1221/01/0013-0221

    Article  Google Scholar 

  • Brodie KH, Rutter EH (1985) On the relationship between deformation and metamorphism, with special reference to the behaviour of basic rocks. In: Thompson AB, Rubie DC (eds) Advances in physical geochemistry. Springer, New York, pp 138–179

    Google Scholar 

  • Burlini L, Bruhn D (2005) High-strain zones: laboratory perspectives on strain softening during ductile deformation. In: Bruhn D, Burlini L (eds) High-strain zones: structure and physical properties. Geological Society London Special Publication 245:1–24

  • Butler TW (1969) On the determination of dislocation densities. No. USNA-E-96-1. Naval Acadamy Annapolis MD Dept of Engineering

  • Davis NE, Kronenberg AK, Newman J (2008) Plasticity and diffusion creep of dolomite. Tectonophysics 456:127–146. doi:10.1016/j.tecto.2008.02.002

    Article  Google Scholar 

  • de Bresser JHP (1991) Intracrystalline deformation of calcite. Geol Ultraiectina 79:1–191

    Google Scholar 

  • de Ronde AA, Stünitz H (2007) Deformation-enhanced reaction in experimentally deformed plagioclase–olivine aggregates. Contrib Mineral Petrol 153:699–717. doi:10.1007/s00410-006-0171-7

    Article  Google Scholar 

  • de Ronde AA, Heilbronner R, Stünitz H, Tullis J (2004) Spatial correlation of deformation and mineral reaction in experimentally deformed plagioclase–olivine aggregates. Tectonophysics 389:93–109. doi:10.1016/j.tecto.2004.07.054

    Article  Google Scholar 

  • de Ronde AA, Stünitz H, Tullis J, Heilbronner R (2005) Reaction-induced weakening of plagioclase–olivine composites. Tectonophysics 409:85–106. doi:10.1016/j.tecto.2005.08.008

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1992) An introduction to the rock-forming minerals, 2nd edn. Addison Wesley Longman Limited, Essex, 696 p

    Google Scholar 

  • Delle Piane C, Burlini L, Grobety B (2007) Reaction-induced strain localization: torsion experiments on dolomite. Earth Planet Sci Lett 256:36–46. doi:10.1016/j.epsl.2007.01.012

    Article  Google Scholar 

  • Delle Piane C, Burlini L, Kunze K, Brack P, Burg JP (2008) Rheology of dolomite: large strain torsion experiments and natural examples. J Struct Geol 30:767–776. doi:10.1016/j.jsg.2008.02.018

    Article  Google Scholar 

  • Delle Piane C, Burlini L, Kunze K (2009) The influence of dolomite on the plastic flow of calcite: rheological, microstructural and chemical evolution during large strain torsion experiments. Tectonophysics 467:145–166. doi:10.1016/j.tecto.2008.12.022

    Article  Google Scholar 

  • Etschmann B, Brugger J, Pearce MA, Ta C, Brautigan D, Jung M, Pring A (2014) Grain boundaries as microreactors during reactive fluid flow: experimental dolomitization of a calcite marble. Contrib Mineral Petrol 168:1045. doi:10.1007/s00410-014-1045-z

    Article  Google Scholar 

  • Evans B, Hay RS, Shimizu N (1986) Diffusion-induced grain-boundary migration in calcite. Geology 14:60–63

    Article  Google Scholar 

  • Fitz Gerald JD, Stünitz H (1993) Deformation of granitoids at low metamorphic grade. I: reactions and grain size reduction. Tectonphysics 221:269–297

    Article  Google Scholar 

  • Furusho M, Kanagawa K (1999) Transformation-induced strain localization in a lherzolite mylonite from the Hidaka metamorphic belt of central Hokkaido, Japan. Tectonphysics 313:411–432. doi:10.1016/S0040-1951(99)00215-2

    Article  Google Scholar 

  • Gebrande H (1982) Elastic wave velocities and constants of elasticity of rocks and rock-forming minerals. In: Angenheister G (ed) Landolt-Börnstein: Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, New Series, V/1b. Springer, Berlin

  • Gifkins RC (1976) Grain-boundary sliding and its accommodation during creep and superplasticity. Metal Trans A 7A:1225–1232

    Article  Google Scholar 

  • Götze LC, Abart R, Rybacki E, Keller LM, Petrishcheva E, Dresen G (2010) Reaction rim growth in the System MgO–Al2O3–SiO2 under uniaxial stress. Mineral Petrol 99:263–277. doi:10.1007/s00710-009-0080-3

    Article  Google Scholar 

  • Hansen LN, Zimmerman ME, Kohlstedt DL (2011) Grain boundary sliding in San Carlos olivine: flow law parameters and crystallographic-preferred orientation. J Geophys Res Solid Earth 116:B08201. doi:10.1029/2011JB008220

    Google Scholar 

  • Heidelbach F, Terry MP, Bystricky M, Holzapfel C, McCammon C (2009) A simultaneous deformation and diffusion experiment: quantifying the role of deformation in enhancing metamorphic reactions. Earth Planet Sci Lett 278:386–394

    Article  Google Scholar 

  • Helpa V, Rybacki E, Abart R, Morales LFG, Rhede D, Jeřábek P, Dresen G (2014) Reaction kinetics of dolomite rim growth. Contrib Mineral Petrol 167:1001. doi:10.1007/s00410-014-1001-y

    Article  Google Scholar 

  • Herwegh M, Xiao X, Evans B (2003) The effect of dissolved magnesium on diffusion creep in calcite. Earth Planet Sci Lett 212:457–470. doi:10.1016/S0012-821X(03)00284-X

    Article  Google Scholar 

  • Herwegh M, Linckens J, Ebert A, Berger A, Brodhag SH (2011) The role of second phases for controlling microstructural evolution in polymineralic rocks: a review. J Struct Geol 33:1728–1750. doi:10.1016/j.jsg.2011.08.011

    Article  Google Scholar 

  • Higgs DV, Handin J (1959) Experimental deformation of dolomite single crystals. Bull Geol Soc Am 70:245–278

    Article  Google Scholar 

  • Hirth G, Kohlstedt D (2003) Rheology of the mantle wedge. In: Eiler J (ed) Inside the subduction factory., Geophysics monograph series 138AGU, Washington, pp 83–105

    Chapter  Google Scholar 

  • Holyoke CW, Tullis J (2006) The interaction between reaction and deformation: an experimental study using a biotite + plagioclase + quartz gneiss. J Metamorph Geol 24:743–762. doi:10.1111/j.1525-1314.2006.00666.x

    Article  Google Scholar 

  • Holyoke CW, Kronenberg AK, Newman J (2013) Dislocation creep of polycrystalline dolomite. Tectonphysics 590:72–82. doi:10.1016/j.tecto.2013.01.011

    Article  Google Scholar 

  • Holyoke CW, Kronenberg AK, Newman J, Ulrich C (2014) Rheology of magnesite. J Geophys Res Solid Earth 119:6534–6557. doi:10.1002/2013JB010541

    Article  Google Scholar 

  • Ji S, Wirth R, Rybacki E, Jiang Z (2000) High-temperature plastic deformation of quartz-plagioclase multilayers by layer normal compression. J Geophys Res Solid Earth 105:16651–16664

    Article  Google Scholar 

  • Ji S, Rybacki E, Wirth R, Jiang Z, Xia B (2005) Mechanical and microstructural characterization of calcium aluminosilicate (CAS)) and SiO2/CAS composites deformed at high temperature and pressure. J Eur Ceram Soc 25:301–311

    Article  Google Scholar 

  • Keller LM, Götze LC, Rybacki E, Dresen G, Abart R (2010) Enhancement of solid-state reaction rates by non-hydrostatic stress effects on polycrystalline diffusion kinetics. Am Mineral 95:1399–1407. doi:10.2138/am.2006.2068

    Article  Google Scholar 

  • Kenkmann T, Dresen G (2002) Dislocation microstructure and phase distribution in a lower crustal shear zone—an example from the Ivrea-Zone, Italy. Int J Earth Sci (Geol Rundsch) 91:445–458. doi:10.1007/s00531-001-0236-9

    Article  Google Scholar 

  • Kerrich R, Allison I, Barnett RL, Moss S, Starkey J (1980) Microstructural and chemical transformations accompanying deformation of granite in a shear zone at Miéville, Switzerland; with implications for stress corrosion cracking and superplastic flow. Contrib Mineral Petrol 73:221–242. doi:10.1007/BF00381442

    Article  Google Scholar 

  • Kruse R, Stünitz H (1999) Deformation mechanisms and phase distribution in mafic high-temperature mylonites from the Jotun Nappe, southern Norway. Tectonphysics 303:223–249. doi:10.1016/S0040-1951(98)00255-8

    Article  Google Scholar 

  • Malone MJ, Baker PA, Burns SJ (1996) Recrystallization of dolomite: an experimental study from 50–200°C. Geochim Cosmochim Acta 60:2189–2207

    Article  Google Scholar 

  • Newman J, Lamb WM, Drury MR, Vissers RLM (1999) Deformation processes in a peridotite shear zone: reaction-softening by an H2O-deficient, continuous net transfer reaction. Tectonphysics 303:193–222

    Article  Google Scholar 

  • Paterson MS (1970) A high-pressure, high-temperature apparatus for rock deformation. Int J Rock Mech Min Sci 7:517–526. doi:10.1016/0148-9062(70)90004-5

    Article  Google Scholar 

  • Paterson MS, Olgaard DL (2000) Rock deformation tests to large shear strains in torsion. J Struct Geol 22:1341–1358. doi:10.1016/S0191-8141(00)00042-0

    Article  Google Scholar 

  • Raj R, Ashby MF (1971) On grain boundary sliding and diffusional creep. Metal Trans A 2:1113–1127

    Article  Google Scholar 

  • Rubie DC (1983) Reaction-enhanced ductility: The role of solid-solid univariant reactions in deformation of the crust and mantle. Tectonphysics 96:331–352

    Article  Google Scholar 

  • Rybacki E, Wirth R, Dresen G (2010) Superplasticity and ductile fracture of synthetic feldspar deformed to large strain. J Geophys Res 115:B08209. doi:10.1029/2009JB007203

    Google Scholar 

  • Rybacki E, Evans B, Janssen C, Wirth R, Dresen G (2013) Influence of stress, temperature, and strain on calcite twins constrained by deformation experiments. Tectonphysics 601:20–36. doi:10.1016/j.tecto.2013.04.021

    Article  Google Scholar 

  • Schmid SM, Paterson MS, Boland JN (1980) High temperature flow and dynamic recrystallization in carrara marble. Tectonphysics 65:245–280

    Article  Google Scholar 

  • Stünitz H (1998) Syndeformational recrystallization—dynamic or compositionally induced? Contib Mineral Petrol 131:219–236. doi:10.1007/s004100050390

    Article  Google Scholar 

  • Terry MP, Heidelbach F (2006) Deformation-enhanced metamorphic reactions and the rheology of high-pressure shear zones, Western Gneiss Region, Norway. J Metamorph Geol 24:3–18. doi:10.1111/j.1525-1314.2005.00618.x

    Article  Google Scholar 

  • Turner FJ, Griggs DT, Heard H (1954) Experimental deformation of calcite crystals. Bull Geol Soc Am 66:883–934

    Article  Google Scholar 

  • Wenk HR (1985) Carbonates. In: Wenk HR (ed) Preferred orientations in deformed metals and rocks. An introduction to modern texture analysis. Academic Press, London, pp 361–384

    Google Scholar 

  • Wenk HR, Barber DJ, Reeder RJ (1983) Microstructure in carbonates. In: Reeder RJ (ed) Carbonates: mineralogy and chemistry. Mineral Soc Am 11:301–367

  • Whitmeyer SJ, Wintsch RP (2005) Reaction localization and softening of texturally hardened mylonites in a reactivated fault zone, central Argentina. J Metamorph Geol 23:411–424. doi:10.1111/j.1525-1314.2005.00588.x

    Article  Google Scholar 

  • Xu L, Renner J, Herwegh M, Evans B (2009) The effect of dissolved magnesium on creep of calcite II: transition from diffusion to dislocation creep. Contrib Mineral Petrol 157:339–358. doi:10.1007/s00410-008-0338-5

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to P. Jeřábek for discussions, S. Gehrmann for sample preparation, M. Naumann for technical support with the Paterson apparatus, and R. Wirth for help with the TEM. Caleb Holyoke and two other anonymous reviewers are thanked for their valuable comments and suggestions. This work was funded by the Deutsche Forschungsgemeinschaft within the framework of FOR 741, Project RY 103/1-1, which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Helpa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Hans Keppler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helpa, V., Rybacki, E., Morales, L.F.G. et al. Influence of stress and strain on dolomite rim growth: a comparative study. Contrib Mineral Petrol 170, 16 (2015). https://doi.org/10.1007/s00410-015-1172-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1172-1

Keywords

Navigation