Skip to main content
Log in

FDG-PET scans in patients with Kraepelinian and non-Kraepelinian schizophrenia

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

An Erratum to this article was published on 30 November 2015

Abstract

We recruited 14 unmedicated patients with Kraepelinian schizophrenia (12 men and 2 women; mean age = 47 years old), 27 non-Kraepelinian patients (21 men and 6 women; mean age = 36.4 years old) and a group of 56 age- and sex-matched healthy volunteers. FDG positron emission tomography and MRI scans were coregistered for both voxel-by-voxel statistical mapping and stereotaxic regions of interest analysis. While both Kraepelinian and non-Kraepelinian patients showed equally lower uptake than healthy volunteers in the frontal lobe, the temporal lobes (Brodmann areas 20 and 21) showed significantly greater decreases in Kraepelinian than in non-Kraepelinian patients. Kraepelinian patients had lower FDG uptake in parietal regions 39 and 40, especially in the right hemisphere, while non-Kraepelinian patients had similar reductions in the left. Only non-Kraepelinian patients had lower caudate FDG uptake than healthy volunteers. While both patient groups had lower uptake than healthy volunteers in the medial dorsal nucleus of the thalamus, Kraepelinian patients alone had higher uptake in the ventral nuclei of the thalamus. Kraepelinian patients also showed higher metabolic rates in white matter. Our results are consistent with other studies indicating that Kraepelinian schizophrenia is a subgroup of schizophrenia, characterized by temporal and right parietal deficits and normal rather than reduced caudate uptake. It suggests that Kraepelinian schizophrenia may be more primarily characterized by FDG uptake decreased in both the frontal and temporal lobes, while non-Kraepelinian schizophrenia may have deficits more limited to the frontal lobe. This is consistent with some neuropsychological and prognosis reports of disordered sensory information processing in Kraepelinian schizophrenia in addition to deficits in frontal lobe executive functions shared with the non-Kraepelinian subtype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Albus M, Hubmann W, Wahlheim C, Sobizack N, Franz U, Mohr F (1996) Contrasts in neuropsychological test profile between patients with first-episode schizophrenia and first-episode affective disorders. Acta Psychiatr Scand 94:87–93

    Article  CAS  PubMed  Google Scholar 

  2. Altamura AC, Bertoldo A, Marotta G, Paoli RA, Caletti E, Dragogna F, Buoli M, Baglivo V, Mauri MC, Brambilla P (2013) White matter metabolism differentiates schizophrenia and bipolar disorder: a preliminary pet study. Psychiatry Res 214:410–414

    Article  PubMed  Google Scholar 

  3. Andreou C, Treszl A, Roesch-Ely D, Kother U, Veckenstedt R, Moritz S (2014) Investigation of the role of the jumping-to-conclusions bias for short-term functional outcome in schizophrenia. Psychiatry Res 218:341–347

    Article  PubMed  Google Scholar 

  4. Bachevalier J, Meunier M, Lu MX, Ungerleider LG (1997) Thalamic and temporal cortex input to medial prefrontal cortex in rhesus monkeys. Exp Brain Res 115:430–444

    Article  CAS  PubMed  Google Scholar 

  5. Bartels P, Subach J (1976) Significance probability mappings and automated interpretation of complex pictorial scenes. In: Preston E, Onoe M (eds) Digital processing of biomedical imagery. Academic Press, NY, pp 101–114

    Chapter  Google Scholar 

  6. Bissell M (2013) Reproducibility: the risks of the replication drive. Nature 503:333–334

    Article  PubMed  Google Scholar 

  7. Bodnar M, Achim AM, Malla AK, Joober R, Benoit A, Lepage M (2012) Functional magnetic resonance imaging correlates of memory encoding in relation to achieving remission in first-episode schizophrenia. Br J Psychiatry 200:300–307

    Article  PubMed  Google Scholar 

  8. Boekel W, Wagenmakers EJ, Belay L, Verhagen J, Brown S, Forstmann BU (2015) A purely confirmatory replication study of structural brain-behavior correlations. Cortex 66:115–133

    Article  PubMed  Google Scholar 

  9. Bralet MC, Loas G, Yon V, Marechal V (2002) Clinical characteristics and risk factors for kraepelinian subtype of schizophrenia: replication of previous findings and relation to summer birth. Psychiatry Res 111:147–154

    Article  PubMed  Google Scholar 

  10. Bralet MC, Lemoullec D, Bosset J, Neveu X, Falissard B (2006) Dysfunction between kraepelinian and non kraepelinian schizophrenic patients using bacs: are there some relations between specific cognitive deficits and high risk of poor prognosis?. Neuropsychopharmacology 9(suppl 1):S148

  11. Bralet MC, Ton T, Koegel C, Amado I, Krebs MO (2014) Link between neurological soft signs and poor outcome schizophrenia)krapelinian sub-type): Preliminary results. In: Schizophrenia international research society conference, Florence, Italy, 2014

  12. Brickman AM, Buchsbaum MS, Shihabuddin L, Hazlett EA, Borod JC, Mohs RC (2003) Striatal size, glucose metabolic rate, and verbal learning in normal aging. Brain Res Cogn Brain Res 17:106–116

    Article  CAS  PubMed  Google Scholar 

  13. Brickman AM, Buchsbaum MS, Shihabuddin L, Byne W, Newmark RE, Brand J, Ahmed S, Mitelman SA, Hazlett EA (2004) Thalamus size and outcome in schizophrenia. Schizophr Res 71:473–484

    Article  PubMed  Google Scholar 

  14. Bryson G, Bell MD (2003) Initial and final work performance in schizophrenia: cognitive and symptom predictors. J Nerv Ment Dis 191:87–92

    PubMed  Google Scholar 

  15. Buchsbaum MS, Shihabuddin L, Hazlett EA, Schroder J, Haznedar MM, Powchik P, Spiegel-Cohen J, Wei T, Singer MB, Davis KL (2002) Kraepelinian and non-kraepelinian schizophrenia subgroup differences in cerebral metabolic rate. Schizophr Res 55:25–40

    Article  PubMed  Google Scholar 

  16. Burgess PW, Gonen-Yaacovi G, Volle E (2011) Functional neuroimaging studies of prospective memory: What have we learnt so far? Neuropsychologia 49:2246–2257

    Article  PubMed  Google Scholar 

  17. Chan HM, Stolwyk R, Kelso W, Neath J, Walterfang M, Mocellin R, Pavlis A, Velakoulis D (2014) Comparing neurocognition in severe chronic schizophrenia and frontotemporal dementia. Aust N Z J Psychiatry 48:828–837

    Article  PubMed  Google Scholar 

  18. Chan HM, Stolwyk R, Neath J, Kelso W, Walterfang M, Mocellin R, Pantelis C, Velakoulis D (2015) Neurocognitive similarities between severe chronic schizophrenia and behavioural variant frontotemporal dementia. Psychiatry Res 225:658–666

    Article  PubMed  Google Scholar 

  19. Collins FS, Tabak LA (2014) Policy: NIH plans to enhance reproducibility. Nature 505:612–613

    Article  PubMed  PubMed Central  Google Scholar 

  20. Desco M, Gispert JD, Reig S, Sanz J, Pascau J, Sarramea F, Benito C, Santos A, Palomo T, Molina V (2003) Cerebral metabolic patterns in chronic and recent-onset schizophrenia. Psychiatry Res 122:125–135

    Article  PubMed  Google Scholar 

  21. Eberling JL, Nordahl TE, Kusubov N, Reed BR, Budinger TF, Jagust WJ (1995) Reduced temporal lobe glucose metabolism in aging. J Neuroimaging 5:178–182

    Article  CAS  PubMed  Google Scholar 

  22. Faerden A, Barrett EA, Nesvag R, Friis S, Finset A, Marder SR, Ventura J, Andreassen OA, Agartz I, Melle I (2013) Apathy, poor verbal memory and male gender predict lower psychosocial functioning one year after the first treatment of psychosis. Psychiatry Res 210:55–61

    Article  PubMed  Google Scholar 

  23. Fisher R (1948) Statistical methods for research workers. Hafner Publishing Company, New York

    Google Scholar 

  24. Gay O, Plaze M, Oppenheim C, Mouchet-Mages S, Gaillard R, Olie JP, Krebs MO, Cachia A (2013) Cortex morphology in first-episode psychosis patients with neurological soft signs. Schizophr Bull 39:820–829

    Article  PubMed  Google Scholar 

  25. Hazlett E, Buchsbaum M, Mohs R, Spiegel-Cohen J, Wei T-C, Azueta R, Haznedar M, Singer M, Shihabuddin L, Luu-Hisa C (1998) Age-related shift in brain region allocation during successful memory performance. Neurobiol Aging 19:437–445

    Article  CAS  PubMed  Google Scholar 

  26. Hazlett EA, Byne W, Brickman AM, Mitsis EM, Newmark R, Haznedar MM, Knatz DT, Chen AD, Buchsbaum MS (2008) Effects of sex and normal aging on regional brain activation during verbal memory performance. Neurobiology of aging 31:826–838

    Article  PubMed  PubMed Central  Google Scholar 

  27. Honea R, Crow TJ, Passingham D, Mackay CE (2005) Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry 162:2233–2245

    Article  PubMed  Google Scholar 

  28. Horga G, Bernacer J, Dusi N, Entis J, Chu K, Hazlett EA, Haznedar MM, Kemether E, Byne W, Buchsbaum MS (2011) Correlations between ventricular enlargement and gray and white matter volumes of cortex, thalamus, striatum, and internal capsule in schizophrenia. Eur Arch Psychiatry Clin Neurosci 261:467–476

    Article  PubMed  PubMed Central  Google Scholar 

  29. http://www.salford-systems.com/products/cart (2013) Classification and regression trees (cart). Salford Systems, San Diego

  30. Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5:143–156

    Article  CAS  PubMed  Google Scholar 

  31. Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17:825–841

    Article  PubMed  Google Scholar 

  32. Kang E, Lee DS, Kang H, Lee JS, Oh SH, Lee MC, Kim CS (2004) Age-associated changes of cerebral glucose metabolic activity in both male and female deaf children: parametric analysis using objective volume of interest and voxel-based mapping. Neuroimage 22:1543–1553

    Article  PubMed  Google Scholar 

  33. Keefe RS, Mohs RC, Losonczy MF, Davidson M, Silverman JM, Kendler KS, Horvath TB, Nora R, Davis KL (1987) Characteristics of very poor outcome schizophrenia. Am J psychiatry 144:889–895

    Article  CAS  PubMed  Google Scholar 

  34. Keefe RS, Frescka E, Apter SH, Davidson M, Macaluso JM, Hirschowitz J, Davis KL (1996) Clinical characteristics of kraepelinian schizophrenia: replication and extension of previous findings. Am J psychiatry 153:806–811

    Article  CAS  PubMed  Google Scholar 

  35. Krebs MO, Gut-Fayand A, Bourdel M, Dischamp J, Olie J (2000) Validation and factorial structure of a standardized neurological examination assessing neurological soft signs in schizophrenia. Schizophr Res 45:245–260

    Article  CAS  PubMed  Google Scholar 

  36. Laloyaux J, Pellegrini N, Mourad H, Bertrand H, Domken MA, Van der Linden M, Laroi F (2013) Performance on a computerized shopping task significantly predicts real world functioning in persons diagnosed with bipolar disorder. Psychiatry Res 210:465–471

    Article  PubMed  Google Scholar 

  37. Laloyaux J, Van der Linden M, Levaux MN, Mourad H, Pirri A, Bertrand H, Domken MA, Adam S, Laroi F (2014) Multitasking capacities in persons diagnosed with schizophrenia: a preliminary examination of their neurocognitive underpinnings and ability to predict real world functioning. Psychiatry Res 217:163–170

    Article  PubMed  Google Scholar 

  38. Lambert M, Karow A, Leucht S, Schimmelmann BG, Naber D (2010) Remission in schizophrenia: validity, frequency, predictors, and patients’ perspective 5 years later. Dialogues Clin Neurosci 12:393–407

    PubMed  PubMed Central  Google Scholar 

  39. Liu J, Corbera S (2014) Edward Wexler B. Neural activation abnormalities during self-referential processing in schizophrenia: an fmri study, Psychiatry Res

    Google Scholar 

  40. Mane A, Falcon C, Mateos JJ, Fernandez-Egea E, Horga G, Lomena F, Bargallo N, Prats-Galino A, Bernardo M, Parellada E (2009) Progressive gray matter changes in first episode schizophrenia: a 4-year longitudinal magnetic resonance study using vbm. Schizophr Res 114:136–143

    Article  PubMed  Google Scholar 

  41. McDowd J, Tang TC, Tsai PC, Wang SY, Su CY (2011) The association between verbal memory, processing speed, negative symptoms and functional capacity in schizophrenia. Psychiatry Res 187:329–334

    Article  PubMed  Google Scholar 

  42. Mitelman SA, Buchsbaum MS (2007) Very poor outcome schizophrenia: Clinical and neuroimaging aspects. Int Rev Psychiatry 19:345–357 (Abingdon, England)

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mitelman S, Shihabuddin L, Brickman A, Hazlett E, Buchsbaum MS (2003) Mri assessment of gray and white matter distribution in brodmann areas of the cortex in patients with schizophrenia with good and poor outcomes. Am J Psychiatry 160:2154–2168

    Article  PubMed  Google Scholar 

  44. Mitelman SA, Brickman AM, Shihabuddin L, Newmark RE, Hazlett EA, Haznedar MM, Buchsbaum MS (2007) A comprehensive assessment of gray and white matter volumes and their relationship to outcome and severity in schizophrenia. Neuroimage 37:449–462

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mitelman SA, Nikiforova YK, Canfield EL, Hazlett EA, Brickman AM, Shihabuddin L, Buchsbaum MS (2009) A longitudinal study of the corpus callosum in chronic schizophrenia. Schizophr Res 114:144–153

    Article  PubMed  PubMed Central  Google Scholar 

  46. Molina V, Hernandez JA, Sanz J, Paniagua JC, Hernandez AI, Martin C, Matias J, Calama J, Bote B (2010) Subcortical and cortical gray matter differences between kraepelinian and non-kraepelinian schizophrenia patients identified using voxel-based morphometry. Psychiatry Res 184:16–22

    Article  PubMed  Google Scholar 

  47. Moritz S, Krausz M, Gottwalz E, Lambert M, Perro C, Ganzer S, Naber D (2000) Cognitive dysfunction at baseline predicts symptomatic 1-year outcome in first-episode schizophrenics. Psychopathology 33:48–51

    Article  CAS  PubMed  Google Scholar 

  48. Nenadic I, Sauer H, Gaser C (2010) Distinct pattern of brain structural deficits in subsyndromes of schizophrenia delineated by psychopathology. Neuroimage 49:1153–1160

    Article  PubMed  Google Scholar 

  49. Nenadic I, Gaser C, Sauer H (2012) Heterogeneity of brain structural variation and the structural imaging endophenotypes in schizophrenia. Neuropsychobiology 66:44–49

    Article  PubMed  Google Scholar 

  50. (NIH) NIoH (2014) Enhancing reproducibility through rigor and transparency—see more at: http://grants.Nih.Gov/grants/guide/notice-files/not-od-15-103.Html#sthash.Wdkuc8gj.Dpuf. In: NIH (ed)

  51. Pinna F, Deriu L, Lepori T, Maccioni R, Milia P, Sarritzu E, Tusconi M, Carpiniello B, Cagliari Recovery Study G (2013) Is it true remission? A study of remitted patients affected by schizophrenia and schizoaffective disorders. Psychiatry Res 210:739–744

    Article  PubMed  Google Scholar 

  52. Prikryl R, Ceskova E, Tronerova S, Kasparek T, Kucerova HP, Ustohal L, Venclikova S, Vrzalova M (2012) Dynamics of neurological soft signs and its relationship to clinical course in patients with first-episode schizophrenia. Psychiatry Res 200:67–72

    Article  PubMed  Google Scholar 

  53. Ragland JD, Laird AR, Ranganath C, Blumenfeld RS, Gonzales SM, Glahn DC (2009) Prefrontal activation deficits during episodic memory in schizophrenia. Am J Psychiatry 166:863–874

    Article  PubMed  PubMed Central  Google Scholar 

  54. Schmitt A, Hasan A, Gruber O, Falkai P (2011) Schizophrenia as a disorder of disconnectivity. Eur Arch Psychiatry Clin Neurosci 261(Suppl 2):S150–S154

    Article  PubMed  Google Scholar 

  55. Schultz CC, Fusar-Poli P, Wagner G, Koch K, Schachtzabel C, Gruber O, Sauer H, Schlosser RG (2012) Multimodal functional and structural imaging investigations in psychosis research. Eur Arch Psychiatry Clin Neurosci 262(Suppl 2):S97–S106

    Article  PubMed  Google Scholar 

  56. Shenton ME, Dickey CC, Frumin M, McCarley RW (2001) A review of MRI findings in schizophrenia. Schizophr Res 49:1–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–155

    Article  PubMed  Google Scholar 

  58. Takahashi T, Suzuki M, Zhou SY, Tanino R, Hagino H, Kawasaki Y, Matsui M, Seto H, Kurachi M (2006) Morphologic alterations of the parcellated superior temporal gyrus in schizophrenia spectrum. Schizophr Res 83:131–143

    Article  PubMed  Google Scholar 

  59. Takahashi T, Suzuki M, Tanino R, Zhou SY, Hagino H, Niu L, Kawasaki Y, Seto H, Kurachi M (2007) Volume reduction of the left planum temporale gray matter associated with long duration of untreated psychosis in schizophrenia: a preliminary report. Psychiatry Res 154:209–219

    Article  PubMed  Google Scholar 

  60. Takahashi T, Wood SJ, Yung AR, Soulsby B, McGorry PD, Suzuki M, Kawasaki Y, Phillips LJ, Velakoulis D, Pantelis C (2009) Progressive gray matter reduction of the superior temporal gyrus during transition to psychosis. Arch Gen Psychiatry 66:366–376

    Article  PubMed  Google Scholar 

  61. Takahashi T, Zhou SY, Nakamura K, Tanino R, Furuichi A, Kido M, Kawasaki Y, Noguchi K, Seto H, Kurachi M, Suzuki M (2011) A follow-up mri study of the fusiform gyrus and middle and inferior temporal gyri in schizophrenia spectrum. Prog Neuropsychopharmacol Biol Psychiatry 35:1957–1964

    Article  PubMed  Google Scholar 

  62. Tepest R, Schwarzbach CJ, Krug B, Klosterkotter J, Ruhrmann S, Vogeley K (2013) Morphometry of structural disconnectivity indicators in subjects at risk and in age-matched patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 263:15–24

    Article  PubMed  Google Scholar 

  63. Torgalsboen AK, Mohn C, Rishovd Rund B (2014) Neurocognitive predictors of remission of symptoms and social and role functioning in the early course of first-episode schizophrenia. Psychiatry Res 216:1–5

    Article  PubMed  Google Scholar 

  64. Torgalsboen AK, Mohn C, Czajkowski N, Rund BR (2015) Relationship between neurocognition and functional recovery in first-episode schizophrenia: results from the second year of the oslo multi-follow-up study. Psychiatry Res 227:185–191

    Article  PubMed  Google Scholar 

  65. Velligan DI, Bow-Thomas CC, Mahurin RK, Miller AL, Halgunseth LC (2000) Do specific neurocognitive deficits predict specific domains of community function in schizophrenia? J Nerv Ment Dis 188:518–524

    Article  CAS  PubMed  Google Scholar 

  66. Wall JT, Symonds LL, Kaas JH (1982) Cortical and subcortical projections of the middle temporal area (mt) and adjacent cortex in galagos. J Comp Neurol 211:193–214

    Article  CAS  PubMed  Google Scholar 

  67. Williams LM (2008) Voxel-based morphometry in schizophrenia: implications for neurodevelopmental connectivity models, cognition and affect. Expert Rev Neurother 8:1049–1065

    Article  PubMed  Google Scholar 

  68. Yeterian EH, Pandya DN (1991) Corticothalamic connections of the superior temporal sulcus in rhesus monkeys. Exp Brain Res 83:268–284

    Article  CAS  PubMed  Google Scholar 

  69. Yoshizawa H, Gazes Y, Stern Y, Miyata Y, Uchiyama S (2014) Characterizing the normative profile of 18f-fdg pet brain imaging: sex difference, aging effect, and cognitive reserve. Psychiatry Res 221:78–85

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported in part by NIMH Grants MH40071 and MH60023 (Monte S. Buchsbaum); NIMH Conte Center “White Matter Abnormalities in Schizophrenia”, MH66392; a VA Merit Award (Lina Shihabuddin), VISN3 MIRECC from the VA to the Bronx VA Medical Center; NARSAD Young Investigator Award and NIMH MH 077146 (Serge A. Mitelman), and NIH Grant RR-0071 from the Division of Research Resources to Mount Sinai School of Medicine Clinical Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monte S. Buchsbaum.

Ethics declarations

Conflict of interest

None.

Human and animal rights

All studies and data acquisition were approved by the Human Subjects Committee at Mount Sinai and analysis approved by the committee at UCSD.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 12487 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bralet, MC., Buchsbaum, M.S., DeCastro, A. et al. FDG-PET scans in patients with Kraepelinian and non-Kraepelinian schizophrenia. Eur Arch Psychiatry Clin Neurosci 266, 481–494 (2016). https://doi.org/10.1007/s00406-015-0633-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-015-0633-x

Keywords

Navigation