Skip to main content

Advertisement

Log in

Advances in pathogenesis of preeclampsia

  • Review
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Preeclampsia is a major cause of health problems for both pregnant women and unborn babies worldwide. However, the underlying causes of preeclampsia are not fully understood, leading to limited effective treatments. The goal of this study is to enhance our knowledge of its causes, devise prevention strategies, and develop treatments.

Methods

We performed a systematic literature search. Six models regarding the pathogenesis of preeclampsia are discussed in this review.

Results

This review focuses on the latest advancements in understanding preeclampsia’s origins. Preeclampsia is a complex condition caused by various factors, processes, and pathways. Reduced blood flow and oxygen to the uterus and placenta, heightened inflammatory reactions, immune imbalances, altered genetic changes, imbalanced blood vessel growth factors, and disrupted gut bacteria may contribute to its development.

Conclusion

Preeclampsia is thought to result from the interplay of these factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chen Y, Lin M, Guo P, Xiao J, Huang X, Xu L, Xiong N, O’Gara MC, O’Meara M, Tan X (2021) Uterine fibroids increase the risk of hypertensive disorders of pregnancy: a prospective cohort study. J Hypertens 39(5):1002–1008. https://doi.org/10.1097/hjh.0000000000002729

    Article  CAS  PubMed  Google Scholar 

  2. Mistry HD, Kurlak LO, Gardner DS, Torffvit O, Hansen A, Broughton Pipkin F, Strevens H (2019) Evidence of augmented intrarenal angiotensinogen associated with glomerular swelling in gestational hypertension and preeclampsia: clinical implications. J Am Heart Assoc 8(13):e012611. https://doi.org/10.1161/jaha.119.012611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. von Dadelszen P, Bhutta ZA, Sharma S, Bone J, Singer J, Wong H, Bellad MB, Goudar SS, Lee T, Li J, Mallapur AA, Munguambe K, Payne BA, Qureshi RN, Sacoor C, Sevene E, Vidler M, Magee LA (2020) The community-level interventions for pre-eclampsia (CLIP) cluster randomised trials in Mozambique, Pakistan, and India: an individual participant-level meta-analysis. Lancet 396(10250):553–563. https://doi.org/10.1016/s0140-6736(20)31128-4

    Article  CAS  Google Scholar 

  4. Turbeville HR, Taylor EB, Garrett MR, Didion SP, Ryan MJ, Sasser JM (2019) Superimposed preeclampsia exacerbates postpartum renal injury despite lack of long-term blood pressure difference in the dahl salt-sensitive rat. Hypertension 73(3):650–658. https://doi.org/10.1161/hypertensionaha.118.12097

    Article  CAS  PubMed  Google Scholar 

  5. Yang F, Janszky I, Gissler M, Roos N, Wikström AK, Yu Y, Chen H, Bonamy AE, Li J, László KD (2022) Association of Maternal Preeclampsia With Offspring Risks of Ischemic Heart Disease and Stroke in Nordic Countries. JAMA Netw Open 5(11):e2242064. https://doi.org/10.1001/jamanetworkopen.2022.42064

    Article  PubMed  PubMed Central  Google Scholar 

  6. Torbergsen T, Oian P, Mathiesen E, Borud O (1989) Pre-eclampsia—a mitochondrial disease? Acta Obstet Gynecol Scand 68(2):145–148. https://doi.org/10.3109/00016348909009902

    Article  CAS  PubMed  Google Scholar 

  7. Marín R, Chiarello DI, Abad C, Rojas D, Toledo F, Sobrevia L (2020) Oxidative stress and mitochondrial dysfunction in early-onset and late-onset preeclampsia. Biochim Biophys Acta Mol Basis Dis 1866(12):165961. https://doi.org/10.1016/j.bbadis.2020.165961

    Article  CAS  PubMed  Google Scholar 

  8. Roca-Portoles A, Tait SWG (2021) Mitochondrial quality control: from molecule to organelle. Cell Mol Life Sci 78(8):3853–3866. https://doi.org/10.1007/s00018-021-03775-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Eisner V, Picard M, Hajnóczky G (2018) Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nat Cell Biol 20(7):755–765. https://doi.org/10.1038/s41556-018-0133-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang Y, Xu E, Musich PR, Lin F (2019) Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure. CNS Neurosci Ther 25(7):816–824. https://doi.org/10.1111/cns.13116

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hu XQ, Zhang L (2022) Mitochondrial Dysfunction in the Pathogenesis of Preeclampsia. Curr Hypertens Rep 24(6):157–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Deer E, Herrock O, Campbell N, Cornelius D, Fitzgerald S, Amaral LM, LaMarca B (2023) The role of immune cells and mediators in preeclampsia. Nat Rev Nephrol. https://doi.org/10.1038/s41581-022-00670-0

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tanwar S, Rhodes F, Srivastava A, Trembling PM, Rosenberg WM (2020) Inflammation and fibrosis in chronic liver diseases including non-alcoholic fatty liver disease and hepatitis C. World J Gastroenterol 26(2):109–133. https://doi.org/10.3748/wjg.v26.i2.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Du M, Wang W, Huang L, Guan X, Lin W, Yao J, Li L (2022) Natural killer cells in the pathogenesis of preeclampsia: a double-edged sword. Journal of Maternal-Fetal & Neonatal Medicine 35(6):1028–1035

    Article  CAS  Google Scholar 

  15. Peraçoli JC, Fortes MR, Rudge MV, Rezkallah-Iwasso MT, Peraçoli MT (1995) Studies of natural killer cells in pregnancy-induced hypertension. Braz J Med Biol Res 28(6):655–661

    PubMed  Google Scholar 

  16. Borzychowski AM, Croy BA, Chan WL, Redman CW, Sargent IL (2005) Changes in systemic type 1 and type 2 immunity in normal pregnancy and pre-eclampsia may be mediated by natural killer cells. Eur J Immunol 35(10):3054–3063. https://doi.org/10.1002/eji.200425929

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Z, Gong F, Jia L, Chang C, Hou L, Yang R, Zheng F (2004) Studies on activity of NK cells in preeclampsia patients. J Huazhong Univ Sci Technolog Med Sci 24(5):473–475. https://doi.org/10.1007/bf02831112

    Article  PubMed  Google Scholar 

  18. Bachmayer N, Rafik Hamad R, Liszka L, Bremme K, Sverremark-Ekström E (2006) Aberrant uterine natural killer (NK)-cell expression and altered placental and serum levels of the NK-cell promoting cytokine interleukin-12 in pre-eclampsia. Am J Reprod Immunol 56(5–6):292–301. https://doi.org/10.1111/j.1600-0897.2006.00429.x

    Article  CAS  PubMed  Google Scholar 

  19. Kalkunte S, Chichester CO, Gotsch F, Sentman CL, Romero R, Sharma S (2008) Evolution of non-cytotoxic uterine natural killer cells. Am J Reprod Immunol 59(5):425–432. https://doi.org/10.1111/j.1600-0897.2008.00595.x

    Article  PubMed  PubMed Central  Google Scholar 

  20. Raghupathy R (2013) Cytokines as key players in the pathophysiology of preeclampsia. Med Princ Pract 22(Suppl 1):8–19. https://doi.org/10.1159/000354200

    Article  PubMed  PubMed Central  Google Scholar 

  21. Derzsy Z, Prohászka Z, Rigó J Jr, Füst G, Molvarec A (2010) Activation of the complement system in normal pregnancy and preeclampsia. Mol Immunol 47(7–8):1500–1506. https://doi.org/10.1016/j.molimm.2010.01.021

    Article  CAS  PubMed  Google Scholar 

  22. Robertson SA, Green ES, Care AS, Moldenhauer LM, Prins JR, Hull ML, Barry SC, Dekker G (2019) Therapeutic Potential of Regulatory T Cells in Preeclampsia-Opportunities and Challenges. Front Immunol 10:478. https://doi.org/10.3389/fimmu.2019.00478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tsuda S, Nakashima A, Shima T, Saito S (2019) New Paradigm in the Role of Regulatory T Cells During Pregnancy. Front Immunol 10:573. https://doi.org/10.3389/fimmu.2019.00573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hu M, Eviston D, Hsu P, Mariño E, Chidgey A, Santner-Nanan B, Wong K, Richards JL, Yap YA, Collier F, Quinton A, Joung S, Peek M, Benzie R, Macia L, Wilson D, Ponsonby AL, Tang MLK, O’Hely M, Daly NL, Mackay CR, Dahlstrom JE, Vuillermin P, Nanan R (2019) Decreased maternal serum acetate and impaired fetal thymic and regulatory T cell development in preeclampsia. Nat Commun 10(1):3031

    Article  PubMed  PubMed Central  Google Scholar 

  25. Docheva N, Arenas G, Nieman KM, Lopes-Perdigao J, Yeo KJ, Rana S (2022) Angiogenic Biomarkers for Risk Stratification in Women with Preeclampsia. Clin Chem 68(6):771–781

    Article  PubMed  Google Scholar 

  26. Li L, Yang H, Chen P, Xin T, Zhou Q, Wei D, Zhang Y, Wang S (2020) Trophoblast-Targeted Nanomedicine Modulates Placental sFLT1 for Preeclampsia Treatment. Front Bioeng Biotechnol 8:64. https://doi.org/10.3389/fbioe.2020.00064

    Article  PubMed  PubMed Central  Google Scholar 

  27. Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, Libermann TA, Morgan JP, Sellke FW, Stillman IE, Epstein FH, Sukhatme VP, Karumanchi SA (2003) Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Investig 111(5):649–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Levine RJ, Maynard SE, Qian C, Lim KH, England LJ, Yu KF, Schisterman EF, Thadhani R, Sachs BP, Epstein FH, Sibai BM, Sukhatme VP, Karumanchi SA (2004) Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 350(7):672–683

    Article  CAS  PubMed  Google Scholar 

  29. Phipps EA, Thadhani R, Benzing T, Karumanchi SA (2019) Pre-eclampsia: pathogenesis, novel diagnostics and therapies. Nat Rev Nephrol 15(5):275–289. https://doi.org/10.1038/s41581-019-0119-6

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gilbert JS, Verzwyvelt J, Colson D, Arany M, Karumanchi SA, Granger JP (2010) Recombinant vascular endothelial growth factor 121 infusion lowers blood pressure and improves renal function in rats with placentalischemia-induced hypertension. Hypertension 55(2):380–385

    Article  CAS  PubMed  Google Scholar 

  31. Narayan V, Thompson EW, Demissei B, Ho JE, Januzzi JL Jr, Ky B (2020) Mechanistic biomarkers informative of both cancer and cardiovascular disease: JACC state-of-the-art review. J Am Coll Cardiol 75(21):2726–2737. https://doi.org/10.1016/j.jacc.2020.03.067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tian J, Xie B, Xiang L, Zhao Y, Zhou D (2016) Soluble Flt-1 improves the repair of ankle joint injury in rats. Am J Transl Res 8(11):4942–4950

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lecarpentier E, Zsengellér ZK, Salahuddin S, Covarrubias AE, Lo A, Haddad B, Thadhani RI, Karumanchi SA (2020) Total versus free placental growth factor levels in the pathogenesis of preeclampsia. Hypertension 76(3):875–883

    Article  CAS  PubMed  Google Scholar 

  34. Tsatsaris V, Goffin F, Munaut C, Brichant JF, Pignon MR, Noel A, Schaaps JP, Cabrol D, Frankenne F, Foidart JM (2003) Overexpression of the soluble vascular endothelial growth factor receptor in preeclamptic patients: pathophysiological consequences. J Clin Endocrinol Metab 88(11):5555–5563

    Article  CAS  PubMed  Google Scholar 

  35. Park S, Dimaio TA, Liu W, Wang S, Sorenson CM, Sheibani N (2013) Endoglin regulates the activation and quiescence of endothelium by participating in canonical and non-canonical TGF-β signaling pathways. J Cell Sci 126(Pt 6):1392–1405

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Margioula-Siarkou G, Margioula-Siarkou C, Petousis S, Margaritis K, Vavoulidis E, Gullo G, Alexandratou M, Dinas K, Sotiriadis A, Mavromatidis G (2022) The role of endoglin and its soluble form in pathogenesis of preeclampsia. Mol Cell Biochem 477(2):479–491

    Article  CAS  PubMed  Google Scholar 

  37. Dymara-Konopka W, Laskowska M, Grywalska E, Hymos A, Błażewicz A, Leszczyńska-Gorzelak B (2023) Similar pro- and antiangiogenic profiles close to delivery in different clinical presentations of two pregnancy syndromes: preeclampsia and fetal growth restriction. IJMS 24(2):972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Margioula-Siarkou G, Margioula-Siarkou C, Petousis S, Margaritis K, Alexandratou M, Dinas K, Sotiriadis A, Mavromatidis G (2021) Soluble endoglin concentration in maternal blood as a diagnostic biomarker of preeclampsia: a systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol 258:366–381

    Article  CAS  PubMed  Google Scholar 

  39. Schmella MJ, Assibey-Mensah V, Parks WT, Roberts JM, Jeyabalan A, Hubel CA, Catov JM (2019) Plasma concentrations of soluble endoglin in the maternal circulation are associated with maternal vascular malperfusion lesions in the placenta of women with preeclampsia. Placenta 78:29–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xia Y, Kellems RE (2013) Angiotensin receptor agonistic autoantibodies and hypertension: preeclampsia and beyond. Circ Res 113(1):78–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou CC, Zhang Y, Irani RA, Zhang H, Mi T, Popek EJ, Hicks MJ, Ramin SM, Kellems RE, Xia Y (2008) Angiotensin receptor agonistic autoantibodies induce pre-eclampsia in pregnant mice. Nat Med 14(8):855–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Duncan JW, Azubuike D, Booz GW, Fisher B, Williams JM, Fan F, Ibrahim T, LaMarca B, Cunningham MW (2020) Angiotensin II type 1 receptor autoantibody blockade improves cerebral blood flow autoregulation and hypertension in a preclinical model of preeclampsia. Hypertens Pregnancy 39(4):451–460

    Article  CAS  PubMed  Google Scholar 

  43. Booz GW, Kennedy D, Bowling M, Robinson T, Azubuike D, Fisher B, Brooks K, Chinthakuntla P, Hoang NH, Hosler JP, Cunningham MW (2021) Angiotensin II type 1 receptor agonistic autoantibody blockade improves postpartum hypertension and cardiac mitochondrial function in rat model of preeclampsia. Biol Sex Differ 12(1):58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ling C, Rönn T (2019) Epigenetics in Human Obesity and Type 2 Diabetes. Cell Metab 29(5):1028–1044. https://doi.org/10.1016/j.cmet.2019.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Moroney JB, Vasudev A, Pertsemlidis A, Zan H, Casali P (2020) Integrative transcriptome and chromatin landscape analysis reveals distinct epigenetic regulations in human memory B cells. Nat Commun 11(1):5435. https://doi.org/10.1038/s41467-020-19242-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ye Y, Tang Y, Xiong Y, Feng L, Li X (2019) Bisphenol A exposure alters placentation and causes preeclampsia-like features in pregnant mice involved in reprogramming of DNA methylation of WNT2. FASEB J 33(2):2732–2742. https://doi.org/10.1096/fj.201800934RRR

    Article  CAS  PubMed  Google Scholar 

  47. Serpeloni F, Radtke K, de Assis SG, Henning F, Nätt D, Elbert T (2017) Grandmaternal stress during pregnancy and DNA methylation of the third generation: an epigenome-wide association study. Transl Psychiatry 7(8):e1202. https://doi.org/10.1038/tp.2017.153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yu MM, Feng YH, Zheng L, Zhang J, Luo GH (2019) Short hairpin RNA-mediated knockdown of nuclear factor erythroid 2-like 3 exhibits tumor-suppressing effects in hepatocellular carcinoma cells. World J Gastroentero 25(10):1210–1223

    Article  CAS  Google Scholar 

  49. Cheng JX, Chen L, Li Y, Cloe A, Yue M, Wei J, Watanabe KA, Shammo JM, Anastasi J, Shen QJ, Larson RA, He C, Le Beau MM, Vardiman JW (2018) Author correction: RNA cytosine methylation and methyltransferases mediate chromatin organization and 5-azacytidine response and resistance in leukaemia. Nat Commun 9(1):2286

    Article  PubMed  PubMed Central  Google Scholar 

  50. Andrawus M, Sharvit L, Atzmon G (2022) Epigenetics and pregnancy: conditional snapshot or rolling event. Int J Mol Sci 23(20):12698. https://doi.org/10.3390/ijms232012698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hu XQ, Song R, Zhang L (2019) Effect of oxidative stress on the estrogen-NOS-NO-K(Ca) channel pathway in uteroplacental dysfunction: its implication in pregnancy complications. Oxid Med Cell Longev 2019:9194269. https://doi.org/10.1155/2019/9194269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ma M, Zhou QJ, Xiong Y, Li B, Li XT (2018) Preeclampsia is associated with hypermethylation of IGF-1 promoter mediated by DNMT1. Am J Transl Res 10(1):16–39

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Jia Y, Li T, Huang X, Xu X, Zhou X, Jia L, Zhu J, Xie D, Wang K, Zhou Q, Jin L, Zhang J, Duan T (2017) Dysregulated DNA methyltransferase 3A upregulates IGFBP5 to suppress trophoblast cell migration and invasion in preeclampsia. Hypertension 69(2):356–366

    Article  CAS  PubMed  Google Scholar 

  54. Kaur L, Sundrani D, Dave K, Randhir K, Mehendale S, Bayyana S, Kalyanaraman K, Chandak GR, Joshi S (2023) Hypoxia inducible factors (HIF1α and HIF3α) are differentially methylated in preeclampsia placentae and are associated with birth outcomes. Mol Cell Biochem 478(10):2309–2318

    Article  CAS  PubMed  Google Scholar 

  55. Sultana Z, Maiti K, Aitken J, Morris J, Dedman L, Smith R (2017) Oxidative stress, placental ageing-related pathologies and adverse pregnancy outcomes. Am J Reprod Immunol. https://doi.org/10.1111/aji.12653

    Article  PubMed  Google Scholar 

  56. Franci G, Sarno F, Nebbioso A, Altucci L (2017) Identification and characterization of PKF118-310 as a KDM4A inhibitor. Epigenetics 12(3):198–205. https://doi.org/10.1080/15592294.2016.1249089

    Article  PubMed  Google Scholar 

  57. Hou L, Wei Y, Lin Y, Wang X, Lai Y, Yin M, Chen Y, Guo X, Wu S, Zhu Y, Yuan J, Tariq M, Li N, Sun H, Wang H, Zhang X, Chen J, Bao X, Jauch R (2020) Concurrent binding to DNA and RNA facilitates the pluripotency reprogramming activity of Sox2. Nucleic Acids Res 48(7):3869–3887. https://doi.org/10.1093/nar/gkaa067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kawamura A, Münzel M, Kojima T, Yapp C, Bhushan B, Goto Y, Tumber A, Katoh T, King ON, Passioura T, Walport LJ, Hatch SB, Madden S, Müller S, Brennan PE, Chowdhury R, Hopkinson RJ, Suga H, Schofield CJ (2017) Highly selective inhibition of histone demethylases by de novo macrocyclic peptides. Nat Commun 8:14773. https://doi.org/10.1038/ncomms14773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Alahari S, Post M, Rolfo A, Weksberg R, Caniggia I (2018) Compromised JMJD6 Histone Demethylase Activity Affects VHL Gene Repression in Preeclampsia. J Clin Endocrinol Metab 103(4):1545–1557. https://doi.org/10.1210/jc.2017-02197

    Article  PubMed  Google Scholar 

  60. Bonasio R, Tu S, Reinberg D (2010) Molecular signals of epigenetic states. Science 330(6004):612–616. https://doi.org/10.1126/science.1191078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li WZ, Zou Y, Song ZY, Wei ZW, Chen G, Cai QL, Wang Z (2020) Long non-coding RNA SNHG5 affects the invasion and apoptosis of renal cell carcinoma by regulating the miR-363-3p-Twist1 interaction. Am J Transl Res 12(2):697–707

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Jiang W, Qu Y, Yang Q, Ma X, Meng Q, Xu J, Liu X, Wang S (2019) D-lnc: a comprehensive database and analytical platform to dissect the modification of drugs on lncRNA expression. RNA Biol 16(11):1586–1591. https://doi.org/10.1080/15476286.2019.1649584

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chatuphonprasert W, Jarukamjorn K, Ellinger I (2018) Physiology and Pathophysiology of Steroid Biosynthesis, Transport and Metabolism in the Human Placenta. Front Pharmacol 9:1027. https://doi.org/10.3389/fphar.2018.01027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sun N, Qin S, Zhang L, Liu S (2021) Roles of noncoding RNAs in preeclampsia. Reprod Biol Endocrinol 19(1):100. https://doi.org/10.1186/s12958-021-00783-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Brkić J, Dunk C, O’Brien J, Fu G, Nadeem L, Wang YL, Rosman D, Salem M, Shynlova O, Yougbaré I, Ni H, Lye SJ, Peng C (2018) MicroRNA-218-5p Promotes Endovascular Trophoblast Differentiation and Spiral Artery Remodeling. Mol Ther 26(9):2189–2205

    Article  PubMed  PubMed Central  Google Scholar 

  66. Jiang S, Chen Q, Liu H, Gao Y, Yang X, Ren Z, Gao Y, Xiao L, Zhong M, Yu Y, Yang X (2020) Preeclampsia-associated lncRNA INHBA-AS1 regulates the proliferation, invasion, and migration of placental trophoblast cells. Mol Ther Nucleic Acids 22:684–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhu Q, Xia P, Zhou X, Li X, Guo W, Zhu B, Zheng X, Wang B, Yang D, Wang J (2019) Hepatitis B Virus Infection Alters Gut Microbiota Composition in Mice. Front Cell Infect Microbiol 9:377. https://doi.org/10.3389/fcimb.2019.00377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jin J, Gao L, Zou X, Zhang Y, Zheng Z, Zhang X, Li J, Tian Z, Wang X, Gu J, Zhang C, Wu T, Wang Z, Zhang Q (2022) Gut Dysbiosis Promotes Preeclampsia by Regulating Macrophages and Trophoblasts. Circ Res 131(6):492–506. https://doi.org/10.1161/circresaha.122.320771

    Article  CAS  PubMed  Google Scholar 

  69. Maifeld A, Bartolomaeus H, Löber U, Avery EG, Steckhan N, Markó L, Wilck N, Hamad I, Šušnjar U, Mähler A, Hohmann C, Chen CY, Cramer H, Dobos G, Lesker TR, Strowig T, Dechend R, Bzdok D, Kleinewietfeld M, Michalsen A, Müller DN, Forslund SK (2021) Fasting alters the gut microbiome reducing blood pressure and body weight in metabolic syndrome patients. Nat Commun 12(1):1970. https://doi.org/10.1038/s41467-021-22097-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yao M, Xiao Y, Yang Z, Ge W, Liang F, Teng H, Gu Y, Yin J (2022) Identification of Biomarkers for Preeclampsia Based on Metabolomics. Clin Epidemiol 14:337–360. https://doi.org/10.2147/clep.S353019

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank contributors for this review. We thank Prof. Hongsheng Gao discussed this article. We thank Qin Zhu, Wen Wen PHD, Xin Zhang MD, and Yujuan Yuan PHD helped us collect literature. We thank the teachers and classmates who helped us write this manuscript. We thank all the peer reviewers for their opinions and suggestions. We thank the Major Science and Technology Projects of Xinjiang Uygur Autonomous Region for invaluable project support.

Funding

This work was supported by the Major Science and Technology Projects of Xinjiang Uygur Autonomous Region [2022A03012-2].

Author information

Authors and Affiliations

Authors

Contributions

NL: Project development and Supervision; MY: Data collection and Manuscript writing; MW: Writing-Reviewing and Editing; All the authors reviewed the final version of the manuscript.

Corresponding author

Correspondence to Nanfang Li.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interest to disclose.

Ethics approval

This is a review, no ethical approval is required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Wang, M. & Li, N. Advances in pathogenesis of preeclampsia. Arch Gynecol Obstet 309, 1815–1823 (2024). https://doi.org/10.1007/s00404-024-07393-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-024-07393-6

Keywords

Navigation