Skip to main content

Advertisement

Log in

Are We Getting Closer to Explaining Preeclampsia?

  • High-risk Gestation and Prenatal Medicine (E Norwitz, Section Editor)
  • Published:
Current Obstetrics and Gynecology Reports Aims and scope Submit manuscript

Abstract

Preeclampsia continues to contribute to major maternal and neonatal morbidity and mortality worldwide. In this article, we review the pathophysiological mechanisms, screening strategies, and novel therapeutic options for preeclampsia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Say L et al. Global causes of maternal death: a WHO systematic analysis. Lancet Glob Health. 2014;2(6):e323–33. Emphasizes the magnitude of maternal health outcomes related to preeclampsia.

    Article  PubMed  Google Scholar 

  2. Abalos E et al. Pre-eclampsia, eclampsia and adverse maternal and perinatal outcomes: a secondary analysis of the World Health Organization Multicountry Survey on Maternal and Newborn Health. BJOG. 2014;121 Suppl 1:14–24.

    Article  PubMed  Google Scholar 

  3. Brosens IA, Robertson WB, Dixon HG. The role of the spiral arteries in the pathogenesis of pre-eclampsia. J Pathol. 1970;101(4):Pvi.

    CAS  PubMed  Google Scholar 

  4. Sargent IL et al. Trophoblast deportation and the maternal inflammatory response in pre-eclampsia. J Reprod Immunol. 2003;59(2):153–60.

    Article  CAS  PubMed  Google Scholar 

  5. Huppertz B et al. Villous cytotrophoblast regulation of the syncytial apoptotic cascade in the human placenta. Histochem Cell Biol. 1998;110(5):495–508.

    Article  CAS  PubMed  Google Scholar 

  6. Kaufmann P, Black S, Huppertz B. Endovascular trophoblast invasion: implications for the pathogenesis of intrauterine growth retardation and preeclampsia. Biol Reprod. 2003;69(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  7. Meekins JW et al. A study of placental bed spiral arteries and trophoblast invasion in normal and severe pre-eclamptic pregnancies. Br J Obstet Gynaecol. 1994;101(8):669–74.

    Article  CAS  PubMed  Google Scholar 

  8. Redline RW, Patterson P. Pre-eclampsia is associated with an excess of proliferative immature intermediate trophoblast. Hum Pathol. 1995;26(6):594–600.

    Article  CAS  PubMed  Google Scholar 

  9. Knight M et al. Shedding of syncytiotrophoblast microvilli into the maternal circulation in pre-eclamptic pregnancies. Br J Obstet Gynaecol. 1998;105(6):632–40.

    Article  CAS  PubMed  Google Scholar 

  10. Lo YM et al. Quantitative abnormalities of fetal DNA in maternal serum in preeclampsia. Clin Chem. 1999;45(2):184–8.

    CAS  PubMed  Google Scholar 

  11. Levine RJ et al. Two-stage elevation of cell-free fetal DNA in maternal sera before onset of preeclampsia. Am J Obstet Gynecol. 2004;190(3):707–13.

    Article  CAS  PubMed  Google Scholar 

  12. Schrocksnadel H et al. Tumor markers in hypertensive disorders of pregnancy. Gynecol Obstet Invest. 1993;35(4):204–8.

    Article  CAS  PubMed  Google Scholar 

  13. Tempfer CB et al. Placental expression and serum concentrations of cytokeratin 19 in preeclampsia. Obstet Gynecol. 2000;95(5):677–82.

    CAS  PubMed  Google Scholar 

  14. Pascual M, Schifferli JA. Another function of erythrocytes: transport of circulating immune complexes. Infusionsther Transfusionsmed. 1995;22(5):310–5.

    CAS  PubMed  Google Scholar 

  15. Huppertz B et al. Hypoxia favours necrotic versus apoptotic shedding of placental syncytiotrophoblast into the maternal circulation. Placenta. 2003;24(2-3):181–90.

    Article  CAS  PubMed  Google Scholar 

  16. Feinberg BB. Preeclampsia: the death of Goliath. Am J Reprod Immunol. 2006;55(2):84–98.

    Article  CAS  PubMed  Google Scholar 

  17. Redman CW et al. Review: Does size matter? Placental debris and the pathophysiology of pre-eclampsia. Placenta. 2012;33(Suppl):S48–54.

    Article  PubMed  Google Scholar 

  18. Haeger M et al. Complement, neutrophil, and macrophage activation in women with severe preeclampsia and the syndrome of hemolysis, elevated liver enzymes, and low platelet count. Obstet Gynecol. 1992;79(1):19–26.

    CAS  PubMed  Google Scholar 

  19. Haeger M et al. Increased release of tumor necrosis factor-alpha and interleukin-6 in women with the syndrome of hemolysis, elevated liver enzymes, and low platelet count. Acta Obstet Gynecol Scand. 1996;75(8):695–701.

    Article  CAS  PubMed  Google Scholar 

  20. Redman CW, Sacks GP, Sargent IL. Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am J Obstet Gynecol. 1999;180(2 Pt 1):499–506.

    Article  CAS  PubMed  Google Scholar 

  21. Marder SR et al. Chemotactic responses of human peripheral blood monocytes to the complement-derived peptides C5a and C5a des Arg. J Immunol. 1985;134(5):3325–31.

    CAS  PubMed  Google Scholar 

  22. Girardi G et al. Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction. J Exp Med. 2006;203(9):2165–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sakuma M et al. The intrinsic complement regulator decay-accelerating factor modulates the biological response to vascular injury. Arterioscler Thromb Vasc Biol. 2010;30(6):1196–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kerr H, Richards A. Complement-mediated injury and protection of endothelium: lessons from atypical haemolytic uraemic syndrome. Immunobiology. 2012;217(2):195–203.

    Article  CAS  PubMed  Google Scholar 

  25. Sacks T et al. Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes. An in vitro model of immune vascular damage. J Clin Invest. 1978;61(5):1161–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Oikonomopoulou K et al. Interactions between coagulation and complement—their role in inflammation. Semin Immunopathol. 2012;34(1):151–65.

    Article  CAS  PubMed  Google Scholar 

  27. Martel C et al. Requirements for membrane attack complex formation and anaphylatoxins binding to collagen-activated platelets. PLoS One. 2011;6(4):e18812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Peerschke EI, Yin W, Ghebrehiwet B. Complement activation on platelets: implications for vascular inflammation and thrombosis. Mol Immunol. 2010;47(13):2170–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Amara U et al. Molecular intercommunication between the complement and coagulation systems. J Immunol. 2010;185(9):5628–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gupta S et al. Lipid peroxidation and antioxidant status in preeclampsia: a systematic review. Obstet Gynecol Surv. 2009;64(11):750–9.

    Article  PubMed  Google Scholar 

  31. Maynard SE et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Levine RJ et al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med. 2004;350(7):672–83.

    Article  CAS  PubMed  Google Scholar 

  33. Peng Q et al. C3a and C5a promote renal ischemia-reperfusion injury. J Am Soc Nephrol. 2012;23(9):1474–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou W et al. Predominant role for C5b-9 in renal ischemia/reperfusion injury. J Clin Invest. 2000;105(10):1363–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Burwick RM et al. Complement activation and kidney injury molecule-1-associated proximal tubule injury in severe preeclampsia. Hypertension. 2014;64(4):833–8.

    Article  CAS  PubMed  Google Scholar 

  36. Vaught AJ et al. Direct evidence of complement activation in HELLP syndrome: a link to atypical hemolytic uremic syndrome. Exp Hematol. 2016;44(5):390–8.

    Article  CAS  PubMed  Google Scholar 

  37. Richani K et al. Normal pregnancy is characterized by systemic activation of the complement system. J Matern Fetal Neonatal Med. 2005;17(4):239–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Smith SC, Baker PN, Symonds EM. Placental apoptosis in normal human pregnancy. Am J Obstet Gynecol. 1997;177(1):57–65.

    Article  CAS  PubMed  Google Scholar 

  39. Lo YM et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350(9076):485–7.

    Article  CAS  PubMed  Google Scholar 

  40. Nauta AJ et al. Direct binding of C1q to apoptotic cells and cell blebs induces complement activation. Eur J Immunol. 2002;32(6):1726–36.

    Article  CAS  PubMed  Google Scholar 

  41. Navratil JS et al. The globular heads of C1q specifically recognize surface blebs of apoptotic vascular endothelial cells. J Immunol. 2001;166(5):3231–9.

    Article  CAS  PubMed  Google Scholar 

  42. Cai Y et al. C1q protein binds to the apoptotic nucleolus and causes C1 protease degradation of nucleolar proteins. J Biol Chem. 2015;290(37):22570–80.

    Article  CAS  PubMed  Google Scholar 

  43. Holmes CH et al. Complement regulatory proteins at the feto-maternal interface during human placental development: distribution of CD59 by comparison with membrane cofactor protein (CD46) and decay accelerating factor (CD55). Eur J Immunol. 1992;22(6):1579–85.

    Article  CAS  PubMed  Google Scholar 

  44. Hsi BL, Hunt JS, Atkinson JP. Differential expression of complement regulatory proteins on subpopulations of human trophoblast cells. J Reprod Immunol. 1991;19(3):209–23.

    Article  CAS  PubMed  Google Scholar 

  45. Nishikori K et al. The change of membrane complement regulatory protein in chorion of early pregnancy. Clin Immunol Immunopathol. 1993;69(2):167–74.

    Article  CAS  PubMed  Google Scholar 

  46. Buurma A et al. Preeclampsia is characterized by placental complement dysregulation. Hypertension. 2012;60(5):1332–7.

    Article  CAS  PubMed  Google Scholar 

  47. Rampersad R et al. The C5b-9 membrane attack complex of complement activation localizes to villous trophoblast injury in vivo and modulates human trophoblast function in vitro. Placenta. 2008;29(10):855–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Genbacev O et al. Hypoxia alters early gestation human cytotrophoblast differentiation/invasion in vitro and models the placental defects that occur in preeclampsia. J Clin Invest. 1996;97(2):540–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Caniggia I et al. Oxygen and placental development during the first trimester: implications for the pathophysiology of pre-eclampsia. Placenta. 2000;21 Suppl A:S25–30.

    Article  CAS  PubMed  Google Scholar 

  50. Pare E et al. Clinical risk factors for preeclampsia in the 21st century. Obstet Gynecol. 2014;124(4):763–70.

    Article  CAS  PubMed  Google Scholar 

  51. Caritis S et al. Predictors of pre-eclampsia in women at high risk. National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. Am J Obstet Gynecol. 1998;179(4):946–51.

    Article  CAS  PubMed  Google Scholar 

  52. Gedikbasi A et al. Preeclampsia due to fetal non-immune hydrops: mirror syndrome and review of literature. Hypertens Pregnancy. 2011;30(3):322–30.

    Article  PubMed  Google Scholar 

  53. Boyd PA, Lindenbaum RH, Redman C. Pre-eclampsia and trisomy 13: a possible association. Lancet. 1987;2(8556):425–7.

    Article  CAS  PubMed  Google Scholar 

  54. Banadakoppa M et al. Spontaneous abortion is associated with elevated systemic C5a and reduced mRNA of complement inhibitory proteins in placenta. Clin Exp Immunol. 2014;177(3):743–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Conroy AL et al. Complement activation and the resulting placental vascular insufficiency drives fetal growth restriction associated with placental malaria. Cell Host Microbe. 2013;13(2):215–26.

    Article  CAS  PubMed  Google Scholar 

  56. Bhakdi S et al. Complement lysis: evidence for an amphiphilic nature of the terminal membrane C5b-9 complex of human complement. J Immunol. 1978;121(6):2526–32.

    CAS  PubMed  Google Scholar 

  57. Tedesco F et al. The cytolytically inactive terminal complement complex activates endothelial cells to express adhesion molecules and tissue factor procoagulant activity. J Exp Med. 1997;185(9):1619–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Burwick RM et al. Urinary excretion of C5b-9 in severe preeclampsia: tipping the balance of complement activation in pregnancy. Hypertension. 2013;62(6):1040–5.

    Article  CAS  PubMed  Google Scholar 

  59. Sims PJ et al. Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity. J Biol Chem. 1988;263(34):18205–12.

    CAS  PubMed  Google Scholar 

  60. Burwick RM, Feinberg BB. Eculizumab for the treatment of preeclampsia/HELLP syndrome. Placenta. 2013;34(2):201–3. First case report to suggest the use of eculizumab for the treatment of preeclampsia/HELLP.

    Article  CAS  PubMed  Google Scholar 

  61. Burwick RM, Burwick NR, Feinberg BB. Eculizumab fails to inhibit generation of C5a in vivo. Blood. 2014;124(23):3502–3.

    Article  CAS  PubMed  Google Scholar 

  62. Poon LC, Nicolaides KH. First-trimester maternal factors and biomarker screening for preeclampsia. Prenat Diagn. 2014;34(7):618–27.

    PubMed  Google Scholar 

  63. Akolekar R et al. Maternal serum placental growth factor at 11 + 0 to 13 + 6 weeks of gestation in the prediction of pre-eclampsia. Ultrasound Obstet Gynecol. 2008;32(6):732–9.

    Article  CAS  PubMed  Google Scholar 

  64. Baumann MU et al. First-trimester serum levels of soluble endoglin and soluble fms-like tyrosine kinase-1 as first-trimester markers for late-onset preeclampsia. Am J Obstet Gynecol. 2008;199(3):266.e1–6.

    Article  Google Scholar 

  65. Myers JE et al. Angiogenic factors combined with clinical risk factors to predict preterm pre-eclampsia in nulliparous women: a predictive test accuracy study. BJOG. 2013;120(10):1215–23.

    Article  CAS  PubMed  Google Scholar 

  66. Crispi F et al. Predictive value of angiogenic factors and uterine artery Doppler for early- versus late-onset pre-eclampsia and intrauterine growth restriction. Ultrasound Obstet Gynecol. 2008;31(3):303–9.

    Article  CAS  PubMed  Google Scholar 

  67. McElrath TF et al. Longitudinal evaluation of predictive value for preeclampsia of circulating angiogenic factors through pregnancy. Am J Obstet Gynecol. 2012;207(5):407.e1–7.

    Article  CAS  Google Scholar 

  68. Akolekar R et al. Competing risks model in early screening for preeclampsia by biophysical and biochemical markers. Fetal Diagn Ther. 2013;33(1):8–15.

    Article  PubMed  Google Scholar 

  69. O’Gorman N et al. Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 11-13 weeks gestation. Am J Obstet Gynecol. 2016;214(1):103.e1–103.e12.

    Article  Google Scholar 

  70. Zeisler H et al. Predictive value of the sFlt-1:PlGF ratio in women with suspected preeclampsia. N Engl J Med. 2016;374(1):13–22.

    Article  CAS  PubMed  Google Scholar 

  71. Guseh SH et al. Urinary excretion of C5b-9 is associated with the anti-angiogenic state in severe preeclampsia. Am J Reprod Immunol. 2015;73(5):437–44.

    Article  CAS  PubMed  Google Scholar 

  72. Poon LC et al. First-trimester maternal serum pregnancy-associated plasma protein-A and pre-eclampsia. Ultrasound Obstet Gynecol. 2009;33(1):23–33.

    Article  CAS  PubMed  Google Scholar 

  73. Spencer K, Cowans NJ, Nicolaides KH. Maternal serum inhibin-A and activin-A levels in the first trimester of pregnancies developing pre-eclampsia. Ultrasound Obstet Gynecol. 2008;32(5):622–6.

    Article  CAS  PubMed  Google Scholar 

  74. Akolekar R et al. Maternal plasma inhibin A at 11-13 weeks of gestation in hypertensive disorders of pregnancy. Prenat Diagn. 2009;29(8):753–60.

    Article  CAS  PubMed  Google Scholar 

  75. Khalil A et al. First trimester maternal serum placental protein 13 for the prediction of pre-eclampsia in women with a priori high risk. Prenat Diagn. 2009;29(8):781–9.

    Article  CAS  PubMed  Google Scholar 

  76. Akolekar R et al. Maternal serum placental protein 13 at 11-13 weeks of gestation in preeclampsia. Prenat Diagn. 2009;29(12):1103–8.

    Article  PubMed  Google Scholar 

  77. Spencer K, Cowans NJ, Nicolaides KH. Low levels of maternal serum PAPP-A in the first trimester and the risk of pre-eclampsia. Prenat Diagn. 2008;28(1):7–10.

    Article  PubMed  Google Scholar 

  78. Buhimschi IA et al. Protein misfolding, congophilia, oligomerization, and defective amyloid processing in preeclampsia. Sci Transl Med. 2014;6(245):245ra92.

    Article  PubMed  Google Scholar 

  79. McCarthy FP, et al. Urinary congophilia in women with hypertensive disorders of pregnancy and pre-existing proteinuria or hypertension. Am J Obstet Gynecol. 2016;doi: 10.1016/j.ajog.2016.04.041.

  80. SammarM, et al. Can staining of damaged proteins in urine effectively predict preeclampsia? Fetal Diagn Ther. 2016; (Epub ahead of print).

  81. Kenny LC et al. Early pregnancy prediction of preeclampsia in nulliparous women, combining clinical risk and biomarkers: the Screening for Pregnancy Endpoints (SCOPE) international cohort study. Hypertension. 2014;64(3):644–52.

    Article  CAS  PubMed  Google Scholar 

  82. Baschat AA et al. Prediction of preeclampsia utilizing the first trimester screening examination. Am J Obstet Gynecol. 2014;211(5):514.e1–7.

    Article  Google Scholar 

  83. Meads CA et al. Methods of prediction and prevention of pre-eclampsia: systematic reviews of accuracy and effectiveness literature with economic modelling. Health Technol Assess. 2008;12(6):iii–iv. 1-270.

    Article  CAS  Google Scholar 

  84. Wright D et al. Competing risks model in screening for preeclampsia by maternal characteristics and medical history. Am J Obstet Gynecol. 2015;213(1):62.e1–10.

    Article  Google Scholar 

  85. Park HJ et al. Screening models using multiple markers for early detection of late-onset preeclampsia in low-risk pregnancy. BMC Pregnancy Childbirth. 2014;14:35.

    Article  PubMed  PubMed Central  Google Scholar 

  86. American College of Obstetricians and Gynecologists; Task Force on Hypertension in Pregnancy. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet Gynecol. 2013;122(5):1122–31.

  87. Qing X et al. Targeted inhibition of complement activation prevents features of preeclampsia in mice. Kidney Int. 2011;79(3):331–9.

    Article  CAS  PubMed  Google Scholar 

  88. Kelly R et al. The management of pregnancy in paroxysmal nocturnal haemoglobinuria on long term eculizumab. Br J Haematol. 2010;149(3):446–50.

    Article  CAS  PubMed  Google Scholar 

  89. Ardissino G et al. Eculizumab for atypical hemolytic uremic syndrome in pregnancy. Obstet Gynecol. 2013;122(2 Pt 2):487–9.

    Article  PubMed  Google Scholar 

  90. Hallstensen RF et al. Eculizumab treatment during pregnancy does not affect the complement system activity of the newborn. Immunobiology. 2015;220(4):452–9.

    Article  CAS  PubMed  Google Scholar 

  91. Thadhani R et al. Removal of soluble fms-like tyrosine kinase-1 by dextran sulfate apheresis in preeclampsia. J Am Soc Nephrol. 2016;27(3):903–13.

    Article  PubMed  Google Scholar 

  92. Thadhani R et al. Pilot study of extracorporeal removal of soluble fms-like tyrosine kinase 1 in preeclampsia. Circulation. 2011;124(8):940–50.

    Article  CAS  PubMed  Google Scholar 

  93. Li Z et al. Recombinant vascular endothelial growth factor 121 attenuates hypertension and improves kidney damage in a rat model of preeclampsia. Hypertension. 2007;50(4):686–92.

    Article  CAS  PubMed  Google Scholar 

  94. Lam C, Lim KH, Karumanchi SA. Circulating angiogenic factors in the pathogenesis and prediction of preeclampsia. Hypertension. 2005;46(5):1077–85.

    Article  CAS  PubMed  Google Scholar 

  95. Gilbert JS et al. Recombinant vascular endothelial growth factor 121 infusion lowers blood pressure and improves renal function in rats with placentalischemia-induced hypertension. Hypertension. 2010;55(2):380–5.

    Article  CAS  PubMed  Google Scholar 

  96. Romero R et al. A longitudinal study of angiogenic (placental growth factor) and anti-angiogenic (soluble endoglin and soluble vascular endothelial growth factor receptor-1) factors in normal pregnancy and patients destined to develop preeclampsia and deliver a small for gestational age neonate. J Matern Fetal Neonatal Med. 2008;21(1):9–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Valensise H et al. Early and late preeclampsia: two different maternal hemodynamic states in the latent phase of the disease. Hypertension. 2008;52(5):873–80.

    Article  CAS  PubMed  Google Scholar 

  98. Spradley FT et al. Placental growth factor administration abolishes placental ischemia-induced hypertension. Hypertension. 2016;67(4):740–7.

    Article  CAS  PubMed  Google Scholar 

  99. Costantine MM, Cleary K. Pravastatin for the prevention of preeclampsia in high-risk pregnant women. Obstet Gynecol. 2013;121(2 Pt 1):349–53.

    Article  CAS  PubMed  Google Scholar 

  100. Fox KA et al. Effects of pravastatin on mediators of vascular function in a mouse model of soluble fms-like tyrosine kinase-1-induced preeclampsia. Am J Obstet Gynecol. 2011;205(4):366.e1–5.

    Article  CAS  Google Scholar 

  101. Costantine MM et al. Using pravastatin to improve the vascular reactivity in a mouse model of soluble fms-like tyrosine kinase-1-induced preeclampsia. Obstet Gynecol. 2010;116(1):114–20.

    Article  CAS  PubMed  Google Scholar 

  102. Easterling TR. Apheresis to treat preeclampsia: insights, opportunities and challenges. J Am Soc Nephrol. 2016;27(3):663–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Burwick.

Ethics declarations

Conflict of Interest

Mirella Mourad, Joses Jain, Manish P. Mehta, Bruce B. Feinberg, and Richard M. Burwick declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on High-risk Gestation and Prenatal Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mourad, M., Jain, J., Mehta, M.P. et al. Are We Getting Closer to Explaining Preeclampsia?. Curr Obstet Gynecol Rep 5, 264–272 (2016). https://doi.org/10.1007/s13669-016-0169-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13669-016-0169-8

Keywords

Navigation