Skip to main content
Log in

Impact of femoro-tibial size combinations and TKA design on kinematics

  • Knee Arthroplasty
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

The variability in patients’ femoral and tibial anatomy requires to use different tibia component sizes with the same femoral component size. These size combinations are allowed by manufacturers, but the clinical impact remains unclear. Therefore, the goals of our study were to investigate whether combining different sizes has an impact on the kinematics for two well-established knee systems and to compare these systems’ kinematics to the native kinematics.

Materials and methods

Six fresh frozen knee specimens were tested in a force controlled knee rig before and after implantation of a cruciate retaining (CR) and a posterior-stabilized (PS) implant. Femoro-tibial kinematics were recorded using a ultrasonic-based motion analysis system while performing a loaded squat from 30° to 130°. In each knee, the original best fit inlay was then replaced by different inlays simulating a smaller or bigger tibia component. The kinematics obtained with the simulated sizes were compared to the original inlay kinematics using descriptive statistics.

Results

For all size combinations, the difference to the original kinematics reached an average of 1.3 ± 3.3 mm in translation and − 0.1 ± 1.2° in rotation with the CR implant. With the PS implant, the average differences reached 0.4 ± 2.7 mm and  − 0.2 ± 0.8°. Among all knees, no size combination consistently resulted in significantly different kinematics.

Each knee showed a singular kinematic pattern. For both knee systems, the rotation was smaller than in the native knee, but the direction of the rotation was preserved. The PS showed more rollback and the CR less rollback than the native knee.

Conclusion

TKA systems designed with a constant tibio-femoral congruency among size combinations should enable to combine different sizes without having substantial impact on the kinematics. The rotational pattern was preserved by both TKA systems, while the rollback could only be maintained by the PS design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jiang C, Liu Z, Wang Y et al (2016) Posterior cruciate ligament retention versus posterior stabilization for total knee arthroplasty: a meta-analysis. PLoS ONE. https://doi.org/10.1371/journal.pone.0147865

    Article  PubMed  PubMed Central  Google Scholar 

  2. Song SJ, Park CH, Bae DK (2019) What to know for selecting cruciate-retaining or posterior-stabilized total knee arthroplasty. Clin Orthop Surg 11:142–150. https://doi.org/10.4055/cios.2019.11.2.142

    Article  PubMed  PubMed Central  Google Scholar 

  3. Li N, Tan Y, Deng Y et al (2014) Posterior cruciate-retaining versus posterior stabilized total knee arthroplasty: a meta-analysis of randomized controlled trials. Knee Surg Sports Traumatol Arthrosc 22:556–564. https://doi.org/10.1007/s00167-012-2275-0

    Article  PubMed  Google Scholar 

  4. Nikolaou VS, Chytas D, Babis GC (2014) Common controversies in total knee replacement surgery: current evidence. World J Orthop 5:460–468. https://doi.org/10.5312/wjo.v5.i4.460

    Article  PubMed  PubMed Central  Google Scholar 

  5. Angerame M, Holst D, Jennings J et al (2019) Total knee arthroplasty kinematics. J Arthroplasty 34:2502–2510. https://doi.org/10.1016/j.arth.2019.05.037

    Article  PubMed  Google Scholar 

  6. Broberg JS, Ndoja S, MacDonald SJ et al (2020) Comparison of contact kinematics in posterior-stabilized and cruciate-retaining total knee arthroplasty at long-term follow-up. J Arthroplasty 35:272–277. https://doi.org/10.1016/j.arth.2019.07.046

    Article  PubMed  Google Scholar 

  7. Dennis DA, Komistek RD, Mahfouz MR et al (2003) Multicenter determination of in vivo kinematics after total knee arthroplasty. Clin Orthop Relat Res. 416:37–57. https://doi.org/10.1097/01.blo.0000092986.12414.b5

    Article  Google Scholar 

  8. Dai Y, Scuderi GR, Penninger C et al (2014) Increased shape and size offerings of femoral components improve fit during total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 22:2931–2940. https://doi.org/10.1007/s00167-014-3163-6

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mahfouz M, Abdel Fatah EE, Bowers LS et al (2012) Three-dimensional morphology of the knee reveals ethnic differences. Clin Orthop Relat Res 470:172–185. https://doi.org/10.1007/s11999-011-2089-2

    Article  PubMed  Google Scholar 

  10. Li P, Tsai T-Y, Li J-S et al (2014) Opmaak 1 // Morphological measurement of the knee: Race and sex effects. Acta Orthop Belg 80:260–268

    PubMed  Google Scholar 

  11. Daines BK, Dennis DA (2014) Gap balancing vs. measured resection technique in total knee arthroplasty. Clin Orthop Surg 6:1–8. https://doi.org/10.4055/cios.2014.6.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shervin D, Pratt K, Healey T et al (2015) Anterior knee pain following primary total knee arthroplasty. World J Orthop 6:795–803. https://doi.org/10.5312/wjo.v6.i10.795

    Article  PubMed  PubMed Central  Google Scholar 

  13. Scott RD (2013) Femoral and tibial component rotation in total knee arthroplasty: methods and consequences. Bone Joint J. 95B:140–143. https://doi.org/10.1302/0301-620X.95B11.32765

    Article  Google Scholar 

  14. Martin S, Saurez A, Ismaily S et al (2014) Maximizing tibial coverage is detrimental to proper rotational alignment. Clin Orthop Relat Res 472:121–125. https://doi.org/10.1007/s11999-013-3047-y

    Article  PubMed  Google Scholar 

  15. Clary C, Aram L, Deffenbaugh D et al (2014) Tibial base design and patient morphology affecting tibial coverage and rotational alignment after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 22:3012–3018. https://doi.org/10.1007/s00167-014-3402-x

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nicoll D, Rowley DI (2010) Internal rotational error of the tibial component is a major cause of pain after total knee replacement. J Bone Joint Surg Br 92:1238–1244. https://doi.org/10.1302/0301-620X.92B9.23516

    Article  CAS  PubMed  Google Scholar 

  17. Klasan A, Twiggs JG, Fritsch BA et al (2020) Correlation of tibial component size and rotation with outcomes after total knee arthroplasty. Arch Orthop Trauma Surg 140:1819–1824. https://doi.org/10.1007/s00402-020-03550-z

    Article  PubMed  Google Scholar 

  18. Schai PA, Thornhill TS, Scott RD (1998) Total knee arthroplasty with the PFC system. Results at a minimum of ten years and survivorship analysis. J Bone Joint Surg Br 80:850–858

    Article  CAS  Google Scholar 

  19. Young SW, Clarke HD, Graves SE et al (2015) Higher rate of revision in pfc sigma primary total knee arthroplasty with mismatch of femoro-tibial component sizes. J Arthroplasty 30:813–817. https://doi.org/10.1016/j.arth.2014.11.035

    Article  PubMed  Google Scholar 

  20. Heylen S, Foubert K, van Haver A et al (2016) Effect of femoro-tibial component size mismatch on outcome in primary total knee replacement. Knee 23:532–534. https://doi.org/10.1016/j.knee.2016.03.003

    Article  PubMed  Google Scholar 

  21. Pellengahr C, Müller PE, Dürr HR et al (2005) The influence of the implant size on the outcome of unconstrained total knee arthroplasty. Acta Chir Belg 105:508–510. https://doi.org/10.1080/00015458.2005.11679769

    Article  CAS  PubMed  Google Scholar 

  22. Grupp TM, Stulberg D, Kaddick C et al (2009) Fixed bearing knee congruency—influence on contact mechanics, abrasive wear and kinematics. Int J Artif Organs 32:213–223. https://doi.org/10.1177/039139880903200405

    Article  PubMed  Google Scholar 

  23. Mihalko WM, Lowell J, Higgs G et al (2016) Total knee post-cam design variations and their effects on kinematics and wear patterns. Orthopedics 39:S45–S49. https://doi.org/10.3928/01477447-20160509-14

    Article  PubMed  Google Scholar 

  24. Steinbrueck A, Schroder C, Woiczinski M et al (2013) Patellofemoral contact patterns before and after total knee arthroplasty: an in vitro measurement. Biomed Eng Online 12:58. https://doi.org/10.1186/1475-925X-12-58

    Article  Google Scholar 

  25. Steinbrueck A, Schroder C, Woiczinski M et al (2017) Mediolateral femoral component position in TKA significantly alters patella shift and femoral roll-back. Knee Surg Sports Traumatol Arthrosc 25:3561–3568. https://doi.org/10.1007/s00167-017-4633-4

    Article  Google Scholar 

  26. Steinbrueck A, Schroeder C, Woiczinski M et al (2018) A lateral retinacular release during total knee arthroplasty changes femorotibial kinematics: an in vitro study. Arch Orthop Trauma Surg 138:401–407. https://doi.org/10.1007/s00402-017-2843-3

    Article  Google Scholar 

  27. Steinbrueck A, Schröder C, Woiczinski M et al (2016) Femorotibial kinematics and load patterns after total knee arthroplasty: an in vitro comparison of posterior-stabilized versus medial-stabilized design. Clin Biomech (Bristol, Avon) 33:42–48. https://doi.org/10.1016/j.clinbiomech.2016.02.002

    Article  Google Scholar 

  28. Steinbruck A, Schroder C, Woiczinski M et al (2016) Influence of tibial rotation in total knee arthroplasty on knee kinematics and retropatellar pressure: an in vitro study. Knee Surg Sports Traumatol Arthrosc 24:2395–2401. https://doi.org/10.1007/s00167-015-3503-1

    Article  PubMed  Google Scholar 

  29. Pennock GR, Clark KJ (1990) An anatomy-based coordinate system for the description of the kinematic displacements in the human knee. J Biomech 23:1209–1218

    Article  CAS  Google Scholar 

  30. Varadarajan KM, Harry RE, Johnson T et al (2009) Can in vitro systems capture the characteristic differences between the flexion-extension kinematics of the healthy and TKA knee? Med Eng Phys 31:899–906. https://doi.org/10.1016/j.medengphy.2009.06.005

    Article  PubMed  Google Scholar 

  31. D’Lima DD, Trice M, Urquhart AG et al (2000) Comparison between the kinematics of fixed and rotating bearing knee prostheses. Clin Orthop Relat Res 380:151–157. https://doi.org/10.1097/00003086-200011000-00020

    Article  Google Scholar 

  32. Qi W, Hosseini A, Tsai TY et al (2013) In vivo kinematics of the knee during weight bearing high flexion. J Biomech 46:1576–1582. https://doi.org/10.1016/j.jbiomech.2013.03.014

    Article  PubMed  PubMed Central  Google Scholar 

  33. Donadio J, Pelissier A, Boyer P et al (2015) Control of paradoxical kinematics in posterior cruciate-retaining total knee arthroplasty by increasing posterior femoral offset. Knee Surg Sports Traumatol Arthrosc 23:1631–1637. https://doi.org/10.1007/s00167-015-3561-4

    Article  CAS  PubMed  Google Scholar 

  34. Dennis DA, Komistek RD, Mahfouz MR et al (2004) A multicenter analysis of axial femorotibial rotation after total knee arthroplasty. Clin Orthop Relat Res. https://doi.org/10.1097/01.blo.0000148777.98244.84

    Article  PubMed  Google Scholar 

  35. Fantozzi S, Catani F, Ensini A et al (2006) Femoral rollback of cruciate-retaining and posterior-stabilized total knee replacements: in vivo fluoroscopic analysis during activities of daily living. J Orthop Res 24:2222–2229. https://doi.org/10.1002/jor.20306

    Article  PubMed  Google Scholar 

  36. Bellemans J, Banks S, Victor J et al (2002) Fluoroscopic analysis of the kinematics of deep flexion in total knee arthroplasty. Influence of posterior condylar offset. J Bone Joint Surg Br 84:50–53

    Article  CAS  Google Scholar 

  37. Victor J, Banks S, Bellemans J (2005) Kinematics of posterior cruciate ligament-retaining and -substituting total knee arthroplasty: a prospective randomised outcome study. J Bone Joint Surg Br 87:646–655

    Article  CAS  Google Scholar 

  38. Victor J, Labey L, Wong P et al (2010) The influence of muscle load on tibiofemoral knee kinematics. J Orthop Res 28:419–428. https://doi.org/10.1002/jor.21019

    Article  PubMed  Google Scholar 

  39. Berend ME, Small SR, Ritter MA et al (2010) Effects of femoral component size on proximal tibial strain with anatomic graduated components total knee arthroplasty. J Arthroplasty 25:58–63. https://doi.org/10.1016/j.arth.2008.11.003

    Article  PubMed  Google Scholar 

  40. Sathasivam S, Walker PS (1994) Optimization of the bearing surface geometry of total knees. J Biomech 27:255–264. https://doi.org/10.1016/0021-9290(94)90002-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Rachel Lang, Aesculap AG, for her support in planning the study and Adrian Sauer, Aesculap AG, for his support in performing the tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Dupraz.

Ethics declarations

Conflict of interest

(ID, IMG) are employees of the Aesculap AG, Tuttlingen, a manufacturer of orthopaedic implants. Three of the authors (VJ, PEM, AS) are advising surgeons in Aesculap R&D project. Four of the authors (VJ, PEM, AS, MW) received institutional funding from Aesculap.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Appendix A: Kinematics obtained with different Columbus DD size combinations.

Figures 

Fig. 9
figure 9

Translation of the medial condyle (APMED) obtained with different Columbus DD size combinations

9,

Fig. 10
figure 10

Translation of the lateral condyle (APLAT) obtained with different Columbus DD size combinations

10,

Fig. 11
figure 11

Rotation obtained with different Columbus DD size combinations

11.

Appendix B: Kinematics obtained with different Vega PS size combinations.

Figures 

Fig. 12
figure 12

Translation of the medial condyle (APMED) obtained with different Vega PS size combinations

12,

Fig. 13
figure 13

Translation of the lateral condyle (APLAT) obtained with different Vega PS size combinations

13,

Fig. 14
figure 14

Rotation obtained with different Vega PS size combinations

14

Appendix C: Medial and lateral translation of the condyles for the native knee and after TKA.

Figures 

Fig.15
figure 15

Translation of the medial condyle (APMED) for the native knee and after TKA

15, 16, 17.

Fig. 16
figure 16

Translation of the lateral condyle (APLAT) for the native knee and after TKA

Fig. 17
figure 17

Rotation for the native knee and after TKA

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dupraz, I., Thorwächter, C., Grupp, T.M. et al. Impact of femoro-tibial size combinations and TKA design on kinematics. Arch Orthop Trauma Surg 142, 1197–1212 (2022). https://doi.org/10.1007/s00402-021-03923-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-021-03923-y

Keywords

Navigation