Skip to main content

Advertisement

Log in

TDP-43 drives synaptic and cognitive deterioration following traumatic brain injury

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) has been recognized as an important risk factor for Alzheimer’s disease (AD). However, the molecular mechanisms by which TBI contributes to developing AD remain unclear. Here, we provide evidence that aberrant production of TDP-43 is a key factor in promoting AD neuropathology and synaptic and cognitive deterioration in mouse models of mild closed head injury (CHI). We observed that a single mild CHI is sufficient to exacerbate AD neuropathology and accelerate synaptic and cognitive deterioration in APP transgenic mice but repeated mild CHI are required to induce neuropathological changes and impairments in synaptic plasticity, spatial learning, and memory retention in wild-type animals. Importantly, these changes in animals exposed to a single or repeated mild CHI are alleviated by silencing of TDP-43 but reverted by rescue of the TDP-43 knockdown. Moreover, overexpression of TDP-43 in the hippocampus aggravates AD neuropathology and provokes cognitive impairment in APP transgenic mice, mimicking single mild CHI-induced changes. We further discovered that neuroinflammation triggered by TBI promotes NF-κB-mediated transcription and expression of TDP-43, which in turn stimulates tau phosphorylation and Aβ formation. Our findings suggest that excessive production of TDP-43 plays an important role in exacerbating AD neuropathology and in driving synaptic and cognitive declines following TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data supporting the findings of this manuscript are available the main text and the supplementary materials or from the corresponding authors upon request.

References

  1. Al-Dahhak R, Khoury R, Qazi E, Grossberg GT (2018) Traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer disease. Clin Geriatr Med 34(4):617–635. https://doi.org/10.1016/j.cger.2018.06.008

    Article  PubMed  Google Scholar 

  2. Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13(2):93–110. https://doi.org/10.1007/s10339-011-0430-z

    Article  CAS  PubMed  Google Scholar 

  3. Arulsamy A, Corrigan F, Collins-Praino LE (2019) Cognitive and neuropsychiatric impairments vary as a function of injury severity at 12 months post-experimental diffuse traumatic brain injury: implications for dementia development. Behav Brain Res. https://doi.org/10.1016/j.bbr.2019.02.045

    Article  PubMed  Google Scholar 

  4. Blennow K, Brody DL, Kochanek PM, Levin H, McKee A et al (2016) Traumatic brain injuries. Nat Rev Dis Primers. https://doi.org/10.1038/nrdp.2016.84

    Article  PubMed  Google Scholar 

  5. Blennow K, Hardy J, Zetterberg H (2012) The neuropathology and neurobiology of traumatic brain injury. Neuron 76(5):886–899. https://doi.org/10.1016/j.neuron.2012.11.021

    Article  CAS  PubMed  Google Scholar 

  6. Blokhuis AM, Koppers M, Groen EJN, van den Heuvel DMA, Dini Modigliani S et al (2016) Comparative interactomics analysis of different ALS-associated proteins identifies converging molecular pathways. Acta Neuropathol 132(2):175–196. https://doi.org/10.1007/s00401-016-1575-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bloom GS (2014) Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 71(4):505–508. https://doi.org/10.1001/jamaneurol.2013.5847

    Article  PubMed  Google Scholar 

  8. Boeynaems S, Bogaert E, Van Damme P, Van Den Bosch L (2016) Inside out: the role of nucleocytoplasmic transport in ALS and FTLD. Acta Neuropathol 132(2):159–173. https://doi.org/10.1007/s00401-016-1586-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Breunig JJ, Guillot-Sestier MV, Town T (2013) Brain injury, neuroinflammation and Alzheimer’s disease. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2013.00026

    Article  PubMed  PubMed Central  Google Scholar 

  10. Budini M, Baralle FE, Buratti E (2014) Targeting TDP-43 in neurodegenerative diseases. Expert Opin Ther Targets 18(6):617–632. https://doi.org/10.1517/14728222.2014.896905

    Article  CAS  PubMed  Google Scholar 

  11. Busche MA, Hyman BT (2020) Synergy between amyloid-β and tau in Alzheimer’s disease. Nat Neurosci 23(10):1183–1193. https://doi.org/10.1038/s41593-020-0687-6

    Article  CAS  PubMed  Google Scholar 

  12. Chen R, Zhang J, Fan N, Teng ZQ, Wu Y et al (2013) Delta9-THC-caused synaptic and memory impairments are mediated through COX-2 signaling. Cell 155(5):1154–1165. https://doi.org/10.1016/j.cell.2013.10.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen R, Zhang J, Wu Y, Wang D, Feng G et al (2012) Monoacylglycerol lipase is a therapeutic target for Alzheimer’s disease. Cell Rep 2(5):1329–1339. https://doi.org/10.1016/j.celrep.2012.09.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cheng JS, Craft R, Yu GQ, Ho K, Wang X et al (2014) Tau reduction diminishes spatial learning and memory deficits after mild repetitive traumatic brain injury in mice. PLoS ONE 9(12):e115765. https://doi.org/10.1371/journal.pone.0115765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cherry JD, Esnault CD, Baucom ZH, Tripodis Y, Huber BR et al (2021) Tau isoforms are differentially expressed across the hippocampus in chronic traumatic encephalopathy and Alzheimer’s disease. Acta Neuropathol Commun 9(1):86. https://doi.org/10.1186/s40478-021-01189-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chou CC, Zhang Y, Umoh ME, Vaughan SW, Lorenzini I et al (2018) TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nat Neurosci 21(2):228–239. https://doi.org/10.1038/s41593-017-0047-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cohen TJ, Guo JL, Hurtado DE, Kwong LK, Mills IP et al (2011) The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat Commun. https://doi.org/10.1038/ncomms1255

    Article  PubMed  Google Scholar 

  18. Dams-O’Connor K, Guetta G, Hahn-Ketter AE, Fedor A (2016) Traumatic brain injury as a risk factor for Alzheimer’s disease: current knowledge and future directions. Neurodegener Dis Manag 6(5):417–429. https://doi.org/10.2217/nmt-2016-0017

    Article  PubMed  PubMed Central  Google Scholar 

  19. de Boer EMJ, Orie VK, Williams T, Baker MR, De Oliveira HM et al (2020) TDP-43 proteinopathies: a new wave of neurodegenerative diseases. J Neurol Neurosurg Psychiatry 92(1):86–95. https://doi.org/10.1136/jnnp-2020-322983

    Article  Google Scholar 

  20. Delic V, Beck KD, Pang KCH, Citron BA (2020) Biological links between traumatic brain injury and Parkinson’s disease. Acta Neuropathol Commun 8(1):45. https://doi.org/10.1186/s40478-020-00924-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Djordjevic J, Sabbir MG, Albensi BC (2016) Traumatic brain injury as a risk factor for Alzheimer’s disease: is inflammatory signaling a key player? Curr Alzheimer Res 13(7):730–738

    Article  CAS  Google Scholar 

  22. Fleminger S, Oliver DL, Lovestone S, Rabe-Hesketh S, Giora A (2003) Head injury as a risk factor for Alzheimer’s disease: the evidence 10 years on; a partial replication. J Neurol Neurosurg Psychiatry 74(7):857–862

    Article  CAS  Google Scholar 

  23. Gao J, Wang L, Huntley ML, Perry G, Wang X (2018) Pathomechanisms of TDP-43 in neurodegeneration. J Neurochem. https://doi.org/10.1111/jnc.14327

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gardner RC, Yaffe K (2015) Epidemiology of mild traumatic brain injury and neurodegenerative disease. Mol Cell Neurosci 66(Pt B):75–80. https://doi.org/10.1016/j.mcn.2015.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gentleman SM, Nash MJ, Sweeting CJ, Graham DI, Roberts GW (1993) Beta-amyloid precursor protein (beta APP) as a marker for axonal injury after head injury. Neurosci Lett 160(2):139–144. https://doi.org/10.1016/0304-3940(93)90398-5

    Article  CAS  PubMed  Google Scholar 

  26. Gilbert M, Snyder C, Corcoran C, Norton MC, Lyketsos CG et al (2014) The association of traumatic brain injury with rate of progression of cognitive and functional impairment in a population-based cohort of Alzheimer’s disease: the Cache County Dementia Progression Study. Int Psychogeriatr 26(10):1593–1601. https://doi.org/10.1017/s1041610214000842

    Article  PubMed  PubMed Central  Google Scholar 

  27. Guo Z, Cupples LA, Kurz A, Auerbach SH, Volicer L et al (2000) Head injury and the risk of AD in the MIRAGE study. Neurology 54(6):1316–1323

    Article  CAS  Google Scholar 

  28. Gupta R, Sen N (2016) Traumatic brain injury: a risk factor for neurodegenerative diseases. Rev Neurosci 27(1):93–100. https://doi.org/10.1515/revneuro-2015-0017

    Article  PubMed  Google Scholar 

  29. Hashem J, Hu M, Zhang J, Gao F, Chen C (2021) Inhibition of 2-arachidonoylglycerol metabolism alleviates neuropathology and improves cognitive function in a Tau mouse model of Alzheimer’s disease. Mol Neurobiol 58(8):4122–4133. https://doi.org/10.1007/s12035-021-02400-2

    Article  CAS  PubMed  Google Scholar 

  30. Heyburn L, Sajja V, Long JB (2019) The role of TDP-43 in military-relevant TBI and chronic neurodegeneration. Front Neurol. https://doi.org/10.3389/fneur.2019.00680

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hu M, Zhu D, Zhang J, Gao F, Hashem J et al (2022) Enhancing endocannabinoid signalling in astrocytes promotes recovery from traumatic brain injury. Brain 145(1):179–193. https://doi.org/10.1093/brain/awab310

    Article  PubMed  Google Scholar 

  32. Irwin DJ, Cohen TJ, Grossman M, Arnold SE, Xie SX et al (2012) Acetylated tau, a novel pathological signature in Alzheimer’s disease and other tauopathies. Brain 135(Pt 3):807–818. https://doi.org/10.1093/brain/aws013

    Article  PubMed  PubMed Central  Google Scholar 

  33. Janssens J, Van Broeckhoven C (2013) Pathological mechanisms underlying TDP-43 driven neurodegeneration in FTLD-ALS spectrum disorders. Hum Mol Genet 22(R1):R77-87. https://doi.org/10.1093/hmg/ddt349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Johnson VE, Stewart W, Arena JD, Smith DH (2017) Traumatic brain injury as a trigger of neurodegeneration. Adv Neurobiol. https://doi.org/10.1007/978-3-319-57193-5_15

    Article  PubMed  PubMed Central  Google Scholar 

  35. Johnson VE, Stewart W, Smith DH (2010) Traumatic brain injury and amyloid-beta pathology: a link to Alzheimer’s disease? Nat Rev Neurosci 11(5):361–370. https://doi.org/10.1038/nrn2808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Josephs KA, Whitwell JL, Tosakulwong N, Weigand SD, Murray ME et al (2015) TDP-43 and pathological subtype of Alzheimer’s disease impact clinical features. Ann Neurol. https://doi.org/10.1002/ana.24493

    Article  PubMed  PubMed Central  Google Scholar 

  37. Josephs KA, Whitwell JL, Weigand SD, Murray ME, Tosakulwong N et al (2014) TDP-43 is a key player in the clinical features associated with Alzheimer’s disease. Acta Neuropathol 127(6):811–824. https://doi.org/10.1007/s00401-014-1269-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kabashi E, Valdmanis PN, Dion P, Spiegelman D, McConkey BJ et al (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40(5):572–574. https://doi.org/10.1038/ng.132

    Article  CAS  PubMed  Google Scholar 

  39. Klim JR, Pintacuda G, Nash LA, Guerra San Juan I, Eggan K (2021) Connecting TDP-43 Pathology with Neuropathy. Trends Neurosci 44(6):424–440. https://doi.org/10.1016/j.tins.2021.02.008

    Article  CAS  PubMed  Google Scholar 

  40. Kraemer BC, Schuck T, Wheeler JM, Robinson LC, Trojanowski JQ et al (2010) Loss of murine TDP-43 disrupts motor function and plays an essential role in embryogenesis. Acta Neuropathol 119(4):409–419. https://doi.org/10.1007/s00401-010-0659-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Launer LJ, Andersen K, Dewey ME, Letenneur L, Ott A, EURODEM Incidence Research Group and Work Groups. European Studies of Dementia et al (1999) Rates and risk factors for dementia and Alzheimer’s disease: results from EURODEM pooled analyses. Neurology 52(1):78–84. https://doi.org/10.1212/wnl.52.1.78

    Article  CAS  PubMed  Google Scholar 

  42. Lauretti E, Dincer O (1867) Praticò D (2020) Glycogen synthase kinase-3 signaling in Alzheimer’s disease. Biochim Biophys Acta Mol Cell Res 5:118664. https://doi.org/10.1016/j.bbamcr.2020.118664

    Article  CAS  Google Scholar 

  43. Lecca D, Bader M, Tweedie D, Hoffman AF, Jung YJ et al (2019) (-)-Phenserine and the prevention of pre-programmed cell death and neuroinflammation in mild traumatic brain injury and Alzheimer’s disease challenged mice. Neurobiol Dis. https://doi.org/10.1016/j.nbd.2019.104528

    Article  PubMed  PubMed Central  Google Scholar 

  44. Li Y, Li Y, Li X, Zhang S, Zhao J et al (2017) Head injury as a risk factor for dementia and Alzheimer’s disease: a systematic review and meta-analysis of 32 observational studies. PLoS ONE 12(1):e0169650. https://doi.org/10.1371/journal.pone.0169650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ling SC, Polymenidou M, Cleveland DW (2013) Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79(3):416–438. https://doi.org/10.1016/j.neuron.2013.07.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Llorens-Martin M, Jurado J, Hernandez F, Avila J (2014) GSK-3beta, a pivotal kinase in Alzheimer disease. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2014.00046

    Article  PubMed  Google Scholar 

  47. LoBue C, Munro C, Schaffert J, Didehbani N, Hart J et al (2019) Traumatic brain injury and risk of long-term brain changes, accumulation of pathological markers, and developing dementia: a review. J Alzheimers Dis 70(3):629–654. https://doi.org/10.3233/jad-190028

    Article  CAS  PubMed  Google Scholar 

  48. Luo J, Nguyen A, Villeda S, Zhang H, Ding Z et al (2014) Long-term cognitive impairments and pathological alterations in a mouse model of repetitive mild traumatic brain injury. Front Neurol. https://doi.org/10.3389/fneur.2014.00012

    Article  PubMed  PubMed Central  Google Scholar 

  49. McAleese KE, Walker L, Erskine D, Thomas AJ, McKeith IG et al (2017) TDP-43 pathology in Alzheimer’s disease, dementia with Lewy bodies and ageing. Brain Pathol 27(4):472–479. https://doi.org/10.1111/bpa.12424

    Article  CAS  PubMed  Google Scholar 

  50. Medina M, Garrido JJ, Wandosell FG (2011) Modulation of GSK-3 as a therapeutic strategy on Tau pathologies. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2011.00024

    Article  PubMed  PubMed Central  Google Scholar 

  51. Meehan WP 3rd, Zhang J, Mannix R, Whalen MJ (2012) Increasing recovery time between injuries improves cognitive outcome after repetitive mild concussive brain injuries in mice. Neurosurgery 71(4):885–891. https://doi.org/10.1227/NEU.0b013e318265a439

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mehta KM, Ott A, Kalmijn S, Slooter AJ, van Duijn CM et al (1999) Head trauma and risk of dementia and Alzheimer’s disease: the Rotterdam study. Neurology 53(9):1959–1962. https://doi.org/10.1212/wnl.53.9.1959

    Article  CAS  PubMed  Google Scholar 

  53. Min SW, Cho SH, Zhou Y, Schroeder S, Haroutunian V et al (2010) Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67(6):953–966. https://doi.org/10.1016/j.neuron.2010.08.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mortimer JA, French LR, Hutton JT, Schuman LM (1985) Head injury as a risk factor for Alzheimer’s disease. Neurology 35(2):264–267

    Article  CAS  Google Scholar 

  55. Nag S, Yu L, Boyle PA, Leurgans SE, Bennett DA et al (2018) TDP-43 pathology in anterior temporal pole cortex in aging and Alzheimer’s disease. Acta Neuropathol Commun 6(1):33. https://doi.org/10.1186/s40478-018-0531-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314(5796):130–133. https://doi.org/10.1126/science.1134108

    Article  CAS  PubMed  Google Scholar 

  57. Oakley H, Cole SL, Logan S, Maus E, Shao P et al (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26(40):10129–10140. https://doi.org/10.1523/jneurosci.1202-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Petraglia AL, Dashnaw ML, Turner RC, Bailes JE (2014) Models of mild traumatic brain injury: translation of physiological and anatomic injury. Neurosurgery 75(4):S34-49. https://doi.org/10.1227/neu.0000000000000472

    Article  PubMed  Google Scholar 

  59. Petraglia AL, Plog BA, Dayawansa S, Dashnaw ML, Czerniecka K et al (2014) The pathophysiology underlying repetitive mild traumatic brain injury in a novel mouse model of chronic traumatic encephalopathy. Surg Neurol Int. https://doi.org/10.4103/2152-7806.147566

    Article  PubMed  PubMed Central  Google Scholar 

  60. Prasad A, Bharathi V, Sivalingam V, Girdhar A, Patel BK (2019) Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2019.00025

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sephton CF, Good SK, Atkin S, Dewey CM, Mayer P 3rd et al (2010) TDP-43 is a developmentally regulated protein essential for early embryonic development. J Biol Chem 285(9):6826–6834. https://doi.org/10.1074/jbc.M109.061846

    Article  CAS  PubMed  Google Scholar 

  62. Shin MK, Vázquez-Rosa E, Koh Y, Dhar M, Chaubey K et al (2021) Reducing acetylated tau is neuroprotective in brain injury. Cell. https://doi.org/10.1016/j.cell.2021.03.032

    Article  PubMed  PubMed Central  Google Scholar 

  63. Shitaka Y, Tran HT, Bennett RE, Sanchez L, Levy MA et al (2011) Repetitive closed-skull traumatic brain injury in mice causes persistent multifocal axonal injury and microglial reactivity. J Neuropathol Exp Neurol 70(7):551–567. https://doi.org/10.1097/NEN.0b013e31821f891f

    Article  PubMed  Google Scholar 

  64. Sivanandam TM, Thakur MK (2012) Traumatic brain injury: a risk factor for Alzheimer’s disease. Neurosci Biobehav Rev 36(5):1376–1381. https://doi.org/10.1016/j.neubiorev.2012.02.013

    Article  PubMed  Google Scholar 

  65. Smith DH, Johnson VE, Trojanowski JQ, Stewart W (2019) Chronic traumatic encephalopathy—confusion and controversies. Nat Rev Neurol 15(3):179–183. https://doi.org/10.1038/s41582-018-0114-8

    Article  PubMed  PubMed Central  Google Scholar 

  66. Song Y, Hu M, Zhang J, Teng ZQ, Chen C (2019) A novel mechanism of synaptic and cognitive impairments mediated via microRNA-30b in Alzheimer’s disease. EBioMedicine. https://doi.org/10.1016/j.ebiom.2018.11.059

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319(5870):1668–1672. https://doi.org/10.1126/science.1154584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sussman ES, Pendharkar AV, Ho AL, Ghajar J (2018) Mild traumatic brain injury and concussion: terminology and classification. Handb Clin Neurol. https://doi.org/10.1016/b978-0-444-63954-7.00003-3

    Article  PubMed  Google Scholar 

  69. Takashima A (2006) GSK-3 is essential in the pathogenesis of Alzheimer’s disease. J Alzheimers Dis 9(3 Suppl):309–317. https://doi.org/10.3233/jad-2006-9s335

    Article  CAS  PubMed  Google Scholar 

  70. Tsitsopoulos PP, Marklund N (2013) Amyloid-beta peptides and Tau protein as biomarkers in cerebrospinal and interstitial fluid following traumatic brain injury: a review of experimental and clinical studies. Front Neurol. https://doi.org/10.3389/fneur.2013.00079

    Article  PubMed  PubMed Central  Google Scholar 

  71. Turner RC, Lucke-Wold BP, Robson MJ, Lee JM, Bailes JE (2016) Alzheimer’s disease and chronic traumatic encephalopathy: distinct but possibly overlapping disease entities. Brain Inj 30(11):1279–1292. https://doi.org/10.1080/02699052.2016.1193631

    Article  PubMed  PubMed Central  Google Scholar 

  72. Walker KR, Tesco G (2013) Molecular mechanisms of cognitive dysfunction following traumatic brain injury. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2013.00029

    Article  PubMed  PubMed Central  Google Scholar 

  73. Washington PM, Villapol S, Burns MP (2016) Polypathology and dementia after brain trauma: does brain injury trigger distinct neurodegenerative diseases, or should they be classified together as traumatic encephalopathy? Exp Neurol 275:381–388. https://doi.org/10.1016/j.expneurol.2015.06.015

    Article  PubMed  Google Scholar 

  74. Wilson AC, Dugger BN, Dickson DW, Wang DS (2011) TDP-43 in aging and Alzheimer’s disease—a review. Int J Clin Exp Pathol 4(2):147–155

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Wu Y, Wu H, Zeng J, Pluimer B, Dong S et al (2021) Mild traumatic brain injury induces microvascular injury and accelerates Alzheimer-like pathogenesis in mice. Acta Neuropathol Commun 9(1):74. https://doi.org/10.1186/s40478-021-01178-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N et al (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53(3):337–351. https://doi.org/10.1016/j.neuron.2007.01.010

    Article  CAS  PubMed  Google Scholar 

  77. Zhang J, Chen C (2018) Alleviation of neuropathology by inhibition of monoacylglycerol lipase in APP transgenic mice lacking CB2 receptors. Mol Neurobiol 55(6):4802–4810. https://doi.org/10.1007/s12035-017-0689-x

    Article  CAS  PubMed  Google Scholar 

  78. Zhang J, Chen C (2008) Endocannabinoid 2-arachidonoylglycerol protects neurons by limiting COX-2 elevation. J Biol Chem 283(33):22601–22611. https://doi.org/10.1074/jbc.M800524200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang J, Hu M, Teng Z, Tang YP, Chen C (2014) Synaptic and cognitive improvements by inhibition of 2-AG metabolism are through upregulation of microRNA-188-3p in a mouse model of Alzheimer’s disease. J Neurosci 34(45):14919–14933. https://doi.org/10.1523/jneurosci.1165-14.2014

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zhang J, Teng Z, Song Y, Hu M, Chen C (2015) Inhibition of monoacylglycerol lipase prevents chronic traumatic encephalopathy-like neuropathology in a mouse model of repetitive mild closed head injury. J Cereb Blood Flow Metab 35(3):443–453. https://doi.org/10.1038/jcbfm.2014.216

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Bryan W. Luikart of Dartmouth Medical School for providing FUGW lentiviral vectors and Dr. Zhao-qian Teng for participating in the initial work of this project. This work was supported by National Institutes of Health grants R01NS076815, R01MH113535, and R01AG058621 (to C.C.) and by startup funds from UT Health San Antonio, Joe R. & Teresa Lozano Long School of Medicine (to C.C.).

Author information

Authors and Affiliations

Authors

Contributions

JZ and CC: conceived the project and designed the experiments; JZ, MH, FG and JH: performed the experiments and analyzed the data; CC: supervised the work and wrote the manuscript.

Corresponding author

Correspondence to Chu Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 928 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Hu, M., Zhang, J. et al. TDP-43 drives synaptic and cognitive deterioration following traumatic brain injury. Acta Neuropathol 144, 187–210 (2022). https://doi.org/10.1007/s00401-022-02449-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-022-02449-w

Keywords

Navigation