Skip to main content
Log in

Phenotypic diversity in ALS and the role of poly-conformational protein misfolding

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

In many types of familial amyotrophic lateral sclerosis (fALS), mutations cause proteins to gain toxic properties that mediate neurodegenerative processes. It is becoming increasingly clear that the proteins involved in ALS, and those responsible for a host of other neurodegenerative diseases, share many characteristics with a growing number of prion diseases. ALS is a heterogenous disease in which the majority of cases are sporadic in their etiology. Studies investigating the inherited forms of the disease are now beginning to provide evidence that some of this heterogeneity may be due to the existence of distinct conformations that ALS-linked proteins can adopt to produce the equivalent of prion strains. In this review, we discuss the in vitro and in vivo evidence that has been generated to better understand the characteristics of these proteins and how their tertiary structure may impact the disease phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Al-Chalabi A, Hardiman O (2013) The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol 9:617–628. https://doi.org/10.1038/nrneurol.2013.203

    Article  CAS  PubMed  Google Scholar 

  2. Alfieri JA, Pino NS, Igaz LM (2014) Reversible behavioral phenotypes in a conditional mouse model of TDP-43 proteinopathies. J Neurosci 34:15244–15259. https://doi.org/10.1523/JNEUROSCI.1918-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ash PE, Zhang YJ, Roberts CM, Saldi T, Hutter H, Buratti E et al (2010) Neurotoxic effects of TDP-43 overexpression in C. elegans. Hum Mol Genet 19:3206–3218. https://doi.org/10.1093/hmg/ddq230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Atarashi R, Moore RA, Sim VL, Hughson AG, Dorward DW, Onwubiko HA et al (2007) Ultrasensitive detection of scrapie prion protein using seeded conversion of recombinant prion protein. Nat Methods 4:645–650. https://doi.org/10.1038/nmeth1066

    Article  CAS  PubMed  Google Scholar 

  5. Ayers J, Xu G, Pletnikova O, Troncoso JC, Hart PJ, Borchelt DR (2014) Conformational specificity of the C4F6 SOD1 antibody; low frequency of reactivity in sporadic ALS cases. Acta Neuropathol Commun 2:55. https://doi.org/10.1186/2051-5960-2-55

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ayers JI, Diamond J, Sari A, Fromholt S, Galaleldeen A, Ostrow LW et al (2016) Distinct conformers of transmissible misfolded SOD1 distinguish human SOD1-FALS from other forms of familial and sporadic ALS. Acta Neuropathol 132:827–840. https://doi.org/10.1007/s00401-016-1623-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ayers JI, Fromholt S, Koch M, DeBosier A, McMahon B, Xu G et al (2014) Experimental transmissibility of mutant SOD1 motor neuron disease. Acta Neuropathol 128:791–803. https://doi.org/10.1007/s00401-014-1342-7

    Article  CAS  PubMed  Google Scholar 

  8. Ayers JI, Fromholt SE, O'Neal VM, Diamond JH, Borchelt DR (2016) Prion-like propagation of mutant SOD1 misfolding and motor neuron disease spread along neuroanatomical pathways. Acta Neuropathol 131:103–114. https://doi.org/10.1007/s00401-015-1514-0

    Article  CAS  PubMed  Google Scholar 

  9. Ayers JI, Schutt CR, Shikiya RA, Aguzzi A, Kincaid AE, Bartz JC (2011) The strain-encoded relationship between PrP replication, stability and processing in neurons is predictive of the incubation period of disease. PLoS Pathog 7:e1001317. https://doi.org/10.1371/journal.ppat.1001317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Babinchak WM, Haider R, Dumm BK, Sarkar P, Surewicz K, Choi JK et al (2019) The role of liquid-liquid phase separation in aggregation of the TDP-43 low-complexity domain. J Biol Chem 294:6306–6317. https://doi.org/10.1074/jbc.RA118.007222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Banci L, Bertini I, Cantini F, Kozyreva T, Massagni C, Palumaa P et al (2012) Human superoxide dismutase 1 (hSOD1) maturation through interaction with human copper chaperone for SOD1 (hCCS). Proc Natl Acad Sci USA 109:13555–13560. https://doi.org/10.1073/pnas.1207493109

    Article  PubMed  PubMed Central  Google Scholar 

  12. Belly A, Moreau-Gachelin F, Sadoul R, Goldberg Y (2005) Delocalization of the multifunctional RNA splicing factor TLS/FUS in hippocampal neurones: exclusion from the nucleus and accumulation in dendritic granules and spine heads. Neurosci Lett 379:152–157. https://doi.org/10.1016/j.neulet.2004.12.071

    Article  CAS  PubMed  Google Scholar 

  13. Bergh J, Zetterstrom P, Andersen PM, Brannstrom T, Graffmo KS, Jonsson PA et al (2015) Structural and kinetic analysis of protein-aggregate strains in vivo using binary epitope mapping. Proc Natl Acad Sci USA 112:4489–4494. https://doi.org/10.1073/pnas.1419228112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bessen RA, Kocisko DA, Raymond GJ, Nandan S, Lansbury PT, Caughey B (1995) Non-genetic propagation of strain-specific properties of scrapie prion protein. Nature 375:698–700. https://doi.org/10.1038/375698a0

    Article  CAS  PubMed  Google Scholar 

  15. Bessen RA, Marsh RF (1992) Biochemical and physical properties of the prion protein from two strains of the transmissible mink encephalopathy agent. J Virol 66:2096–2101

    Article  CAS  Google Scholar 

  16. Bessen RA, Marsh RF (1992) Identification of two biologically distinct strains of transmissible mink encephalopathy in hamsters. J Gen Virol 73(Pt 2):329–334

    Article  Google Scholar 

  17. Bidhendi EE, Bergh J, Zetterstrom P, Andersen PM, Marklund SL, Brannstrom T (2016) Two superoxide dismutase prion strains transmit amyotrophic lateral sclerosis-like disease. J Clin Invest 126:2249–2253. https://doi.org/10.1172/JCI84360

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bolton DC, McKinley MP, Prusiner SB (1982) Identification of a protein that purifies with the scrapie prion. Science (New York, NY) 218:1309–1311

    Article  CAS  Google Scholar 

  19. Borchelt DR, Lee MK, Slunt HS, Guarnieri M, Xu ZS, Wong PC et al (1994) Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. Proc Natl Acad Sci USA 91:8292–8296

    Article  CAS  Google Scholar 

  20. Bosco DA, Morfini G, Karabacak NM, Song Y, Gros-Louis F, Pasinelli P et al (2010) Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nat Neurosci 13:1396–1403. https://doi.org/10.1038/nn.2660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brotherton TE, Li Y, Cooper D, Gearing M, Julien J-P, Rothstein JD et al (2012) Localization of a toxic form of superoxide dismutase 1 protein to pathologically affected tissues in familial ALS. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1115009109

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bruce M, Chree A, McConnell I, Foster J, Pearson G, Fraser H (1994) Transmission of bovine spongiform encephalopathy and scrapie to mice: strain variation and the species barrier. Philos Trans R Soc Lond B Biol Sci 343:405–411. https://doi.org/10.1098/rstb.1994.0036

    Article  CAS  PubMed  Google Scholar 

  23. Bruijn LI, Houseweart MK, Kato S, Anderson KL, Anderson SD, Ohama E et al (1998) Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science (New York, NY) 281:1851–1854

    Article  CAS  Google Scholar 

  24. Bruns CK, Kopito RR (2007) Impaired post-translational folding of familial ALS-linked Cu, Zn superoxide dismutase mutants. EMBO J 26:855–866. https://doi.org/10.1038/sj.emboj.7601528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Buratti E, Baralle FE (2001) Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J Biol Chem 276:36337–36343. https://doi.org/10.1074/jbc.M104236200

    Article  CAS  PubMed  Google Scholar 

  26. Cao X, Antonyuk SV, Seetharaman SV, Whitson LJ, Taylor AB, Holloway SP et al (2008) Structures of the G85R variant of SOD1 in familial amyotrophic lateral sclerosis. J Biol Chem 283:16169–16177. https://doi.org/10.1074/jbc.M801522200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chattopadhyay M, Durazo A, Sohn SH, Strong CD, Gralla EB, Whitelegge JP et al (2008) Initiation and elongation in fibrillation of ALS-linked superoxide dismutase. Proc Natl Acad Sci USA 105:18663–18668. https://doi.org/10.1073/pnas.0807058105

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chia R, Tattum MH, Jones S, Collinge J, Fisher EM, Jackson GS (2010) Superoxide dismutase 1 and tgSOD1 mouse spinal cord seed fibrils, suggesting a propagative cell death mechanism in amyotrophic lateral sclerosis. PLoS ONE 5:e10627. https://doi.org/10.1371/journal.pone.0010627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chiò A, Logroscino G, Hardiman O, Swingler R, Mitchell D, Beghi E et al (2009) Prognostic factors in ALS: a critical review. Amyotroph Lateral Scler 10:310–323. https://doi.org/10.3109/17482960802566824

    Article  PubMed  PubMed Central  Google Scholar 

  30. Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A et al (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11:909–913. https://doi.org/10.1038/ncb1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Collinge J, Sidle KC, Meads J, Ironside J, Hill AF (1996) Molecular analysis of prion strain variation and the aetiology of ‘new variant’ CJD. Nature 383:685–690. https://doi.org/10.1038/383685a0

    Article  CAS  PubMed  Google Scholar 

  32. Conicella AE, Zerze GH, Mittal J, Fawzi NL (2016) ALS mutations disrupt phase separation mediated by alpha-helical structure in the TDP-43 low-complexity C-terminal domain. Structure 24:1537–1549. https://doi.org/10.1016/j.str.2016.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Crapo JD, Oury T, Rabouille C, Slot JW, Chang LY (1992) Copper, zinc superoxide dismutase is primarily a cytosolic protein in human cells. Proc Natl Acad Sci USA 89:10405–10183

    Article  CAS  Google Scholar 

  34. Crown A, McAlary L, Fagerli E, Brown H, Yerbury JJ, Galaleldeen A et al (2020) Tryptophan residue 32 in human Cu-Zn superoxide dismutase modulates prion-like propagation and strain selection. PLoS ONE 15:e0227655. https://doi.org/10.1371/journal.pone.0227655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Da Cruz S, Bui A, Saberi S, Lee SK, Stauffer J, McAlonis-Downes M et al (2017) Misfolded SOD1 is not a primary component of sporadic ALS. Acta Neuropathol 134:97–111. https://doi.org/10.1007/s00401-017-1688-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dearmond SJ, McKinley MP, Barry RA, Braunfeld MB, McColloch JR, Prusiner SB (1985) Identification of prion amyloid filaments in scrapie-infected brain. Cell 41:221–235

    Article  CAS  Google Scholar 

  37. Dearmond SJ, Yang SL, Lee A, Bowler R, Taraboulos A, Groth D et al (1993) Three scrapie prion isolates exhibit different accumulation patterns of the prion protein scrapie isoform. Proc Natl Acad Sci USA 90:6449–6453

    Article  CAS  Google Scholar 

  38. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256. https://doi.org/10.1016/j.neuron.2011.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Donnelly CJ, Zhang PW, Pham JT, Haeusler AR, Mistry NA, Vidensky S et al (2013) RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80:415–428. https://doi.org/10.1016/j.neuron.2013.10.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ekhtiari Bidhendi E, Bergh J, Zetterstrom P, Forsberg K, Pakkenberg B, Andersen PM, Marklund SL, Brannstrom T (2018) Mutant superoxide dismutase aggregates from human spinal cord transmit amyotrophic lateral sclerosis. Acta Neuropathol 136:939–953. https://doi.org/10.1007/s00401-018-1915-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Falcon B, Zhang W, Murzin AG, Murshudov G, Garringer HJ, Vidal R et al (2018) Structures of filaments from Pick's disease reveal a novel tau protein fold. Nature 561:137–140. https://doi.org/10.1038/s41586-018-0454-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Falcon B, Zhang W, Schweighauser M, Murzin AG, Vidal R, Garringer HJ et al (2018) Tau filaments from multiple cases of sporadic and inherited Alzheimer's disease adopt a common fold. Acta Neuropathol 136:699–708. https://doi.org/10.1007/s00401-018-1914-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Falcon B, Zivanov J, Zhang W, Murzin AG, Garringer HJ, Vidal R et al (2019) Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature 568:420–423. https://doi.org/10.1038/s41586-019-1026-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Feiler MS, Strobel B, Freischmidt A, Helferich AM, Kappel J, Brewer BM et al (2015) TDP-43 is intercellularly transmitted across axon terminals. J Cell Biol 211:897–911. https://doi.org/10.1083/jcb.201504057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Feuillette S, Delarue M, Riou G, Gaffuri A-L, Wu J, Lenkei Z et al (2017) Neuron-to-neuron transfer of FUS in Drosophila primary neuronal culture is enhanced by ALS-associated mutations. J Mol Neurosci 62:114–122. https://doi.org/10.1007/s12031-017-0908-y

    Article  CAS  PubMed  Google Scholar 

  46. Field LS, Furukawa Y, O'Halloran TV, Culotta VC (2003) Factors controlling the uptake of yeast copper/zinc superoxide dismutase into mitochondria. J Biol Chem 278:28052–28059. https://doi.org/10.1074/jbc.M304296200

    Article  CAS  PubMed  Google Scholar 

  47. Fitzpatrick AWP, Falcon B, He S, Murzin AG, Murshudov G, Garringer HJ et al (2017) Cryo-EM structures of tau filaments from Alzheimer's disease. Nature 547:185–190. https://doi.org/10.1038/nature23002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fujii R, Takumi T (2005) TLS facilitates transport of mRNA encoding an actin-stabilizing protein to dendritic spines. J Cell Sci 118:5755–5765. https://doi.org/10.1242/jcs.02692

    Article  CAS  PubMed  Google Scholar 

  49. Furukawa Y, Kaneko K, Watanabe S, Yamanaka K, Nukina N (2011) A seeding reaction recapitulates intracellular formation of Sarkosyl-insoluble transactivation response element (TAR) DNA-binding protein-43 inclusions. J Biol Chem 286:18664–18672. https://doi.org/10.1074/jbc.M111.231209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Furukawa Y, Kaneko K, Yamanaka K, O'Halloran TV, Nukina N (2008) Complete loss of post-translational modifications triggers fibrillar aggregation of SOD1 in the familial form of amyotrophic lateral sclerosis. J Biol Chem 283:24167–24176. https://doi.org/10.1074/jbc.M802083200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Furukawa Y, Torres AS, O'Halloran TV (2004) Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS. EMBO J 23:2872–2881. https://doi.org/10.1038/sj.emboj.7600276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gajdusek DC (1977) Unconventional viruses and the origin and disappearance of kuru. Science (New York, NY) 197:943–960

    Article  CAS  Google Scholar 

  53. Gendron TF, Bieniek KF, Zhang YJ, Jansen-West K, Ash PE, Caulfield T et al (2013) Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS. Acta Neuropathol 126:829–844. https://doi.org/10.1007/s00401-013-1192-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gertz B, Wong M, Martin LJ (2012) Nuclear localization of human SOD1 and mutant SOD1-specific disruption of survival motor neuron protein complex in transgenic amyotrophic lateral sclerosis mice. J Neuropathol Exp Neurol 71:162–177. https://doi.org/10.1097/NEN.0b013e318244b635

    Article  CAS  PubMed  Google Scholar 

  55. Giordana MT, Piccinini M, Grifoni S, De Marco G, Vercellino M, Magistrello M et al (2010) TDP-43 redistribution is an early event in sporadic amyotrophic lateral sclerosis. Brain Pathol 20:351–360. https://doi.org/10.1111/j.1750-3639.2009.00284.x

    Article  CAS  PubMed  Google Scholar 

  56. Goedert M, Falcon B, Zhang W, Ghetti B, Scheres SHW (2018) Distinct conformers of assembled tau in Alzheimer's and Pick's diseases. Cold Spring Harb Symp Quant Biol 83:163–171. https://doi.org/10.1101/sqb.2018.83.037580

    Article  PubMed  Google Scholar 

  57. Goldfarb LG, Petersen RB, Tabaton M, Brown P, LeBlanc AC, Montagna P et al (1992) Fatal familial insomnia and familial Creutzfeldt-Jakob disease: disease phenotype determined by a DNA polymorphism. Science (New York, NY) 258:806–808

    Article  CAS  Google Scholar 

  58. Gonzalez L, Martin S, Jeffrey M (2003) Distinct profiles of PrP(d) immunoreactivity in the brain of scrapie- and BSE-infected sheep: implications for differential cell targeting and PrP processing. J Gen Virol 84:1339–1350. https://doi.org/10.1099/vir.0.18800-0

    Article  CAS  PubMed  Google Scholar 

  59. Grad LI, Guest WC, Yanai A, Pokrishevsky E, O’Neill MA, Gibbs E et al (2011) Intermolecular transmission of superoxide dismutase 1 misfolding in living cells. Proc Natl Acad Sci USA 108:16398–16403. https://doi.org/10.1073/pnas.1102645108

    Article  PubMed  PubMed Central  Google Scholar 

  60. Grad LI, Yerbury JJ, Turner BJ, Guest WC, Pokrishevsky E, O'Neill MA et al (2014) Intercellular propagated misfolding of wild-type Cu/Zn superoxide dismutase occurs via exosome-dependent and -independent mechanisms. Proc Natl Acad Sci USA 111:3620–3625. https://doi.org/10.1073/pnas.1312245111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Griffith JS (1967) Self-replication and scrapie. Nature 215:1043–1044

    Article  CAS  Google Scholar 

  62. Guo W, Chen Y, Zhou X, Kar A, Ray P, Chen X et al (2011) An ALS-associated mutation affecting TDP-43 enhances protein aggregation, fibril formation and neurotoxicity. Nat Struct Mol Biol 18:822–830. https://doi.org/10.1038/nsmb.2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD et al (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science (New York, NY) 264:1772–1775

    Article  CAS  Google Scholar 

  64. Harrison AF, Shorter J (2017) RNA-binding proteins with prion-like domains in health and disease. Biochem J 474:1417–1438. https://doi.org/10.1042/BCJ20160499

    Article  CAS  PubMed  Google Scholar 

  65. Hasegawa M, Nonaka T, Tsuji H, Tamaoka A, Yamashita M, Kametani F et al (2011) Molecular dissection of TDP-43 proteinopathies. J Mol Neurosci 45:480–485. https://doi.org/10.1007/s12031-011-9571-x

    Article  CAS  PubMed  Google Scholar 

  66. Hayward LJ, Rodriguez JA, Kim JW, Tiwari A, Goto JJ, Cabelli DE et al (2002) Decreased metallation and activity in subsets of mutant superoxide dismutases associated with familial amyotrophic lateral sclerosis. J Biol Chem 277:15923–15931. https://doi.org/10.1074/jbc.M112087200

    Article  CAS  PubMed  Google Scholar 

  67. Hsiao KK, Groth D, Scott M, Yang SL, Serban H, Rapp D et al (1994) Serial transmission in rodents of neurodegeneration from transgenic mice expressing mutant prion protein. Proc Natl Acad Sci USA 91:9126–9130

    Article  CAS  Google Scholar 

  68. Igaz LM, Kwong LK, Lee EB, Chen-Plotkin A, Swanson E, Unger T et al (2011) Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice. J Clin Invest 121:726–738. https://doi.org/10.1172/JCI44867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jeffrey M, Martin S, Gonzalez L (2003) Cell-associated variants of disease-specific prion protein immunolabelling are found in different sources of sheep transmissible spongiform encephalopathy. J Gen Virol 84:1033–1045. https://doi.org/10.1099/vir.0.18825-0

    Article  CAS  PubMed  Google Scholar 

  70. Johnson BS, McCaffery JM, Lindquist S, Gitler AD (2008) A yeast TDP-43 proteinopathy model: exploring the molecular determinants of TDP-43 aggregation and cellular toxicity. Proc Natl Acad Sci USA 105:6439–6444. https://doi.org/10.1073/pnas.0802082105

    Article  PubMed  PubMed Central  Google Scholar 

  71. Johnson BS, Snead D, Lee JJ, McCaffery JM, Shorter J, Gitler AD (2009) TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J Biol Chem 284:20329–20339. https://doi.org/10.1074/jbc.M109.010264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Johnston JA, Dalton MJ, Gurney ME, Kopito RR (2000) Formation of high molecular weight complexes of mutant Cu, Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 97:12571–12576. https://doi.org/10.1073/pnas.220417997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Josephs KA, Whitwell JL, Weigand SD, Murray ME, Tosakulwong N, Liesinger AM et al (2014) TDP-43 is a key player in the clinical features associated with Alzheimer's disease. Acta Neuropathol 127:811–824. https://doi.org/10.1007/s00401-014-1269-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jucker M, Walker LC (2013) Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501:45–51. https://doi.org/10.1038/nature12481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kato M, Han TW, Xie S, Shi K, Du X, Wu LC et al (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149:753–767. https://doi.org/10.1016/j.cell.2012.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kimberlin RH, Walker C (1977) Characteristics of a short incubation model of scrapie in the golden hamster. J Gen Virol 34:295–304

    Article  CAS  Google Scholar 

  77. Kimberlin RH, Walker CA (1978) Evidence that the transmission of one source of scrapie agent to hamsters involves separation of agent strains from a mixture. J Gen Virol 39:487–496

    Article  CAS  Google Scholar 

  78. Kocisko DA, Come JH, Priola SA, Chesebro B, Raymond GJ, Lansbury PT et al (1994) Cell-free formation of protease-resistant prion protein. NeuroReport 370:471–474. https://doi.org/10.1038/370471a0

    Article  CAS  Google Scholar 

  79. Kovacs GG, Trabattoni G, Hainfellner JA, Ironside JW, Knight RS, Budka H (2002) Mutations of the prion protein gene phenotypic spectrum. J Neurol 249:1567–1582. https://doi.org/10.1007/s00415-002-0896-9

    Article  CAS  PubMed  Google Scholar 

  80. Kraemer BC, Schuck T, Wheeler JM, Robinson LC, Trojanowski JQ, Lee VM et al (2010) Loss of murine TDP-43 disrupts motor function and plays an essential role in embryogenesis. Acta Neuropathol 119:409–419. https://doi.org/10.1007/s00401-010-0659-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C et al (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323:1205–1208. https://doi.org/10.1126/science.1166066

    Article  CAS  PubMed  Google Scholar 

  82. Lee EB, Porta S, Baer GM, Xu Y, Suh E, Kwong LK et al (2017) Expansion of the classification of FTLD-TDP: distinct pathology associated with rapidly progressive frontotemporal degeneration. Acta Neuropathol 134:65–78. https://doi.org/10.1007/s00401-017-1679-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Leigh PN, Anderton BH, Dodson A, Gallo JM, Swash M, Power DM (1988) Ubiquitin deposits in anterior horn cells in motor neurone disease. Neurosci Lett 93:197–203. https://doi.org/10.1016/0304-3940(88)90081-x

    Article  CAS  PubMed  Google Scholar 

  84. Liebman SW, Chernoff YO (2012) Prions in yeast. Genetics 191:1041–1072. https://doi.org/10.1534/genetics.111.137760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lowe J, Lennox G, Jefferson D, Morrell K, McQuire D, Gray T et al (1988) A filamentous inclusion body within anterior horn neurones in motor neurone disease defined by immunocytochemical localisation of ubiquitin. Neurosci Lett 94:203–210. https://doi.org/10.1016/0304-3940(88)90296-0

    Article  CAS  PubMed  Google Scholar 

  86. Mackenzie IR, Neumann M, Baborie A, Sampathu DM, Du Plessis D, Jaros E et al (2011) A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol 122:111–113. https://doi.org/10.1007/s00401-011-0845-8

    Article  PubMed  PubMed Central  Google Scholar 

  87. Marsh RF, Kimberlin RH (1975) Comparison of scrapie and transmissible mink encephalopathy in hamsters. II. Clinical signs, pathology, and pathogenesis. J Infect Dis 131:104–110. https://doi.org/10.1093/infdis/131.2.104

    Article  CAS  PubMed  Google Scholar 

  88. McGurk L, Gomes E, Guo L, Shorter J, Bonini NM (2018) Poly(ADP-ribose) engages the TDP-43 nuclear-localization sequence to regulate granulo-filamentous aggregation. Biochemistry 57:6923–6926. https://doi.org/10.1021/acs.biochem.8b00910

    Article  CAS  PubMed  Google Scholar 

  89. McKee AC, Gavett BE, Stern RA, Nowinski CJ, Cantu RC, Kowall NW et al (2010) TDP-43 proteinopathy and motor neuron disease in chronic traumatic encephalopathy. J Neuropathol Exp Neurol 69:918–929. https://doi.org/10.1097/NEN.0b013e3181ee7d85

    Article  CAS  PubMed  Google Scholar 

  90. Mori K, Weng SM, Arzberger T, May S, Rentzsch K, Kremmer E et al (2013) The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339:1335–1338. https://doi.org/10.1126/science.1232927

    Article  CAS  PubMed  Google Scholar 

  91. Munch C, O'Brien J, Bertolotti A (2011) Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc Natl Acad Sci USA 108:3548–3553. https://doi.org/10.1073/pnas.1017275108

    Article  PubMed  PubMed Central  Google Scholar 

  92. Nelson PT, Trojanowski JQ, Abner EL, Al-Janabi OM, Jicha GA, Schmitt FA et al (2016) “New Old Pathologies”: AD, PART, and cerebral age-related TDP-43 with sclerosis (CARTS). J Neuropathol Exp Neurol 75:482–498. https://doi.org/10.1093/jnen/nlw033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Neumann M, Roeber S, Kretzschmar HA, Rademakers R, Baker M, Mackenzie IR (2009) Abundant FUS-immunoreactive pathology in neuronal intermediate filament inclusion disease. Acta Neuropathol 118:605–616. https://doi.org/10.1007/s00401-009-0581-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science (New York, NY) 314:130–133. https://doi.org/10.1126/science.1134108

    Article  CAS  Google Scholar 

  95. Niaki AG, Sarkar J, Cai X, Rhine K, Vidaurre V, Guy B et al (2020) Loss of dynamic RNA interaction and aberrant phase separation induced by two distinct types of ALS/FTD-linked FUS mutations. Mol Cell 77(82–94):e84. https://doi.org/10.1016/j.molcel.2019.09.022

    Article  CAS  Google Scholar 

  96. Nomura T, Watanabe S, Kaneko K, Yamanaka K, Nukina N, Furukawa Y (2014) Intranuclear aggregation of mutant FUS/TLS as a molecular pathomechanism of amyotrophic lateral sclerosis. J Biol Chem 289:1192–1202. https://doi.org/10.1074/jbc.M113.516492

    Article  CAS  PubMed  Google Scholar 

  97. Nonaka T, Masuda-Suzukake M, Arai T, Hasegawa Y, Akatsu H, Obi T et al (2013) Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep 4:124–134. https://doi.org/10.1016/j.celrep.2013.06.007

    Article  CAS  PubMed  Google Scholar 

  98. Outram GW (1976) The pathogenesis of scrapie in mice. Front Biol 44:325

    CAS  PubMed  Google Scholar 

  99. Pare B, Lehmann M, Beaudin M, Nordstrom U, Saikali S, Julien JP et al (2018) Misfolded SOD1 pathology in sporadic amyotrophic lateral sclerosis. Sci Rep 8:14223. https://doi.org/10.1038/s41598-018-31773-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M, Hein MY et al (2015) A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162:1066–1077. https://doi.org/10.1016/j.cell.2015.07.047

    Article  CAS  PubMed  Google Scholar 

  101. Peelaerts W, Bousset L, Van der Perren A, Moskalyuk A, Pulizzi R, Giugliano M et al (2015) Alpha-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522:340–344. https://doi.org/10.1038/nature14547

    Article  CAS  PubMed  Google Scholar 

  102. Porta S, Xu Y, Restrepo CR, Kwong LK, Zhang B, Brown HJ et al (2018) Patient-derived frontotemporal lobar degeneration brain extracts induce formation and spreading of TDP-43 pathology in vivo. Nat Commun 9:4220. https://doi.org/10.1038/s41467-018-06548-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Prudencio M, Hart PJ, Borchelt DR, Andersen PM (2009) Variation in aggregation propensities among ALS-associated variants of SOD1: correlation to human disease. Hum Mol Genet 18:3217–3226. https://doi.org/10.1093/hmg/ddp260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Prusiner SB (1978) An approach to the isolation of biological particles using sedimentation analysis. J Biol Chem 253:916–921

    Article  CAS  Google Scholar 

  105. Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science (New York, NY) 216:136–144

    Article  CAS  Google Scholar 

  106. Prusiner SB, McKinley MP, Bowman KA, Bolton DC, Bendheim PE, Groth DF et al (1983) Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 35:349–358

    Article  CAS  Google Scholar 

  107. Ratovitski T, Corson LB, Strain J, Wong P, Cleveland DW, Culotta VC et al (1999) Variation in the biochemical/biophysical properties of mutant superoxide dismutase 1 enzymes and the rate of disease progression in familial amyotrophic lateral sclerosis kindreds. Hum Mol Genet 8:1451–1460

    Article  CAS  Google Scholar 

  108. Reaume AG, Elliott JL, Hoffman EK, Kowall NW, Ferrante RJ, Siwek DF et al (1996) Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 13:43–47. https://doi.org/10.1038/ng0596-43

    Article  CAS  PubMed  Google Scholar 

  109. Reisin R (2012) Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Yearb Neurol Neurosurg 2012:170–172. https://doi.org/10.1016/j.yneu.2012.05.040

    Article  Google Scholar 

  110. Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268. https://doi.org/10.1016/j.neuron.2011.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62. https://doi.org/10.1038/362059a0

    Article  CAS  PubMed  Google Scholar 

  112. Saberi S, Stauffer JE, Schulte DJ, Ravits J (2015) Neuropathology of amyotrophic lateral sclerosis and its variants. Neurol Clin 33:855–876. https://doi.org/10.1016/j.ncl.2015.07.012

    Article  PubMed  PubMed Central  Google Scholar 

  113. Saborio GP, Permanne B, Soto C (2001) Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411:810–813. https://doi.org/10.1038/35081095

    Article  CAS  PubMed  Google Scholar 

  114. Sacino AN, Ayers JI, Brooks MM, Chakrabarty P, Hudson VJ 3rd, Howard JK et al (2016) Non-prion-type transmission in A53T alpha-synuclein transgenic mice: a normal component of spinal homogenates from naive non-transgenic mice induces robust alpha-synuclein pathology. Acta Neuropathol 131:151–154. https://doi.org/10.1007/s00401-015-1505-1

    Article  CAS  PubMed  Google Scholar 

  115. Safar J, Wille H, Itri V, Groth D, Serban H, Torchia M et al (1998) Eight prion strains have PrP(Sc) molecules with different conformations. Nat Med 4:1157–1165. https://doi.org/10.1038/2654

    Article  CAS  PubMed  Google Scholar 

  116. Sala FA, Wright GSA, Antonyuk SV, Garratt RC, Hasnain SS (2019) Molecular recognition and maturation of SOD1 by its evolutionarily destabilised cognate chaperone hCCS. PLoS Biol 17:e3000141. https://doi.org/10.1371/journal.pbio.3000141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sanders DW, Kaufman SK, DeVos SL, Sharma AM, Mirbaha H, Li A et al (2014) Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron 82:1271–1288. https://doi.org/10.1016/j.neuron.2014.04.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sea K, Sohn SH, Durazo A, Sheng Y, Shaw BF, Cao X et al (2015) Insights into the role of the unusual disulfide bond in copper–zinc superoxide dismutase. J Biol Chem 290:2405–2418. https://doi.org/10.1074/jbc.M114.588798

    Article  CAS  PubMed  Google Scholar 

  119. Shaw BF, Valentine JS (2007) How do ALS-associated mutations in superoxide dismutase 1 promote aggregation of the protein? Trends Biochem Sci 32:78–85. https://doi.org/10.1016/j.tibs.2006.12.005

    Article  CAS  PubMed  Google Scholar 

  120. Silverman JM, Fernando SM, Grad LI, Hill AF, Turner BJ, Yerbury JJ et al (2016) Disease mechanisms in ALS: misfolded SOD1 transferred through exosome-dependent and exosome-independent pathways. Cell Mol Neurobiol 36:377–381. https://doi.org/10.1007/s10571-015-0294-3

    Article  CAS  PubMed  Google Scholar 

  121. Smethurst P, Newcombe J, Troakes C, Simone R, Chen YR, Patani R et al (2016) In vitro prion-like behaviour of TDP-43 in ALS. Neurobiol Dis 96:236–247. https://doi.org/10.1016/j.nbd.2016.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Stathopulos PB, Rumfeldt JA, Scholz GA, Irani RA, Frey HE, Hallewell RA et al (2003) Cu/Zn superoxide dismutase mutants associated with amyotrophic lateral sclerosis show enhanced formation of aggregates in vitro. Proc Natl Acad Sci USA 100:7021–7026. https://doi.org/10.1073/pnas.1237797100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sun Y, Chakrabartty A (2017) Phase to phase with TDP-43. Biochemistry 56:809–823. https://doi.org/10.1021/acs.biochem.6b01088

    Article  CAS  PubMed  Google Scholar 

  124. Tatom JB, Wang DB, Dayton RD, Skalli O, Hutton ML, Dickson DW et al (2009) Mimicking aspects of frontotemporal lobar degeneration and Lou Gehrig's disease in rats via TDP-43 overexpression. Mol Ther 17:607–613. https://doi.org/10.1038/mt.2009.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Telling GC, Parchi P, Dearmond SJ, Cortelli P, Montagna P, Gabizon R et al (1996) Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity. Science (New York, NY) 274:2079–2082

    Article  CAS  Google Scholar 

  126. Tokuda E, Takei YI, Ohara S, Fujiwara N, Hozumi I, Furukawa Y (2019) Wild-type Cu/Zn-superoxide dismutase is misfolded in cerebrospinal fluid of sporadic amyotrophic lateral sclerosis. Mol Neurodegener 14:42. https://doi.org/10.1186/s13024-019-0341-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tsao W, Jeong YH, Lin S, Ling J, Price DL, Chiang PM et al (2012) Rodent models of TDP-43: recent advances. Brain Res 1462:26–39. https://doi.org/10.1016/j.brainres.2012.04.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Valentine JS, Doucette PA, Potter SZ (2005) Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. Annu Rev Biochem 74:563–593. https://doi.org/10.1146/annurev.biochem.72.121801.161647

    Article  CAS  PubMed  Google Scholar 

  129. Vance C, Rogelj B, Hortobágyi T, De Vos KJ, Nishimura AL, Sreedharan J et al (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science (New York, NY) 323:1208–1211. https://doi.org/10.1126/science.1165942

    Article  CAS  Google Scholar 

  130. Voigt A, Herholz D, Fiesel FC, Kaur K, Muller D, Karsten P et al (2010) TDP-43-mediated neuron loss in vivo requires RNA-binding activity. PLoS ONE 5:e12247. https://doi.org/10.1371/journal.pone.0012247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang J, Farr GW, Zeiss CJ, Rodriguez-Gil DJ, Wilson JH, Furtak K et al (2009) Progressive aggregation despite chaperone associations of a mutant SOD1-YFP in transgenic mice that develop ALS. Proc Natl Acad Sci USA 106:1392–1397. https://doi.org/10.1073/pnas.0813045106

    Article  PubMed  PubMed Central  Google Scholar 

  132. Wang J, Slunt H, Gonzales V, Fromholt D, Coonfield M, Copeland NG et al (2003) Copper-binding-site-null SOD1 causes ALS in transgenic mice: aggregates of non-native SOD1 delineate a common feature. Hum Mol Genet 12:2753–2764. https://doi.org/10.1093/hmg/ddg312

    Article  CAS  PubMed  Google Scholar 

  133. Wang J, Xu G, Borchelt DR (2002) High molecular weight complexes of mutant superoxide dismutase 1: age-dependent and tissue-specific accumulation. Neurobiol Dis 9:139–148. https://doi.org/10.1006/nbdi.2001.0471

    Article  CAS  PubMed  Google Scholar 

  134. Wang J, Xu G, Slunt HH, Gonzales V, Coonfield M, Fromholt D et al (2005) Coincident thresholds of mutant protein for paralytic disease and protein aggregation caused by restrictively expressed superoxide dismutase cDNA. Neurobiol Dis 20:943–952. https://doi.org/10.1016/j.nbd.2005.06.005

    Article  CAS  PubMed  Google Scholar 

  135. Wang WY, Pan L, Su SC, Quinn EJ, Sasaki M, Jimenez JC et al (2013) Interaction of FUS and HDAC1 regulates DNA damage response and repair in neurons. Nat Neurosci 16:1383–1391. https://doi.org/10.1038/nn.3514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Watts JC, Giles K, Oehler A, Middleton L, Dexter DT, Gentleman SM et al (2013) Transmission of multiple system atrophy prions to transgenic mice. Proc Natl Acad Sci USA 110:19555–19560. https://doi.org/10.1073/pnas.1318268110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Westergard T, Jensen BK, Wen X, Cai J, Kropf E, Iacovitti L et al (2016) Cell-to-cell transmission of dipeptide repeat proteins linked to C9orf72-ALS/FTD. Cell Rep 17:645–652. https://doi.org/10.1016/j.celrep.2016.09.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wils H, Kleinberger G, Janssens J, Pereson S, Joris G, Cuijt I et al (2010) TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 107:3858–3863. https://doi.org/10.1073/pnas.0912417107

    Article  PubMed  PubMed Central  Google Scholar 

  139. Zhang W, Tarutani A, Newell KL, Murzin AG, Matsubara T, Falcon B et al (2020) Novel tau filament fold in corticobasal degeneration. Nature. https://doi.org/10.1038/s41586-020-2043-0

    Article  PubMed  PubMed Central  Google Scholar 

  140. Zhang YJ, Xu YF, Cook C, Gendron TF, Roettges P, Link CD et al (2009) Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proc Natl Acad Sci USA 106:7607–7612. https://doi.org/10.1073/pnas.0900688106

    Article  PubMed  PubMed Central  Google Scholar 

  141. Zhang YJ, Xu YF, Dickey CA, Buratti E, Baralle F, Bailey R et al (2007) Progranulin mediates caspase-dependent cleavage of TAR DNA binding protein-43. J Neurosci 27:10530–10534. https://doi.org/10.1523/JNEUROSCI.3421-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zu T, Liu Y, Banez-Coronel M, Reid T, Pletnikova O, Lewis J et al (2013) RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proc Natl Acad Sci USA 110:E4968–4977. https://doi.org/10.1073/pnas.1315438110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Institutes of Neurological Disease and Stroke (1R01NA092788-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob I. Ayers.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayers, J.I., Borchelt, D.R. Phenotypic diversity in ALS and the role of poly-conformational protein misfolding. Acta Neuropathol 142, 41–55 (2021). https://doi.org/10.1007/s00401-020-02222-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-020-02222-x

Keywords

Navigation