Skip to main content
Log in

Rheological and molecular characterization of long-chain branched poly(ethylene terephthalate)

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Reactive extrusion with pyromellitic dianhydride (PMDA) and tetraglycidyl diamino diphenyl methane (TGDDM) was conducted to create long-chain branched poly(ethylene terephthalate) (LCB-PET). The mechanical and molecular properties were analyzed by linear and non-linear viscoelastic rheology in the melt state and by size-exclusion chromatography measurements with triple detection. The two tetra-functional chain extenders lead to strong viscosity increases, increasing strain hardening effects, and increasing LCB with increasing chain extender concentration. Molecular stress function model predictions show good agreement with the elongational data measured and allowed a quantification of the strain hardening. Analysis of SEC triple detection data shows a strong increase of the average molar mass, polydispersity, radius of gyration, and hydrodynamic radius with increasing chain extender concentration. Branching was confirmed by a decreasing Mark-Houwink exponent, and the analysis of the contraction of the molecule revealed either star-like, comb-like, random tree-like or hyperbranched structures depending on concentration and type of chain extender.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Auhl D, Stange J, Münstedt H, Krause B, Voigt D, Lederer A, Lappan U, Lunkwitz K (2004) Long-chain branched polypropylenes by electron beam irradiation and their rheological properties. Macromolecules 37:9465–9472

    Article  Google Scholar 

  • Auhl D, Stadler FJ, Münstedt H (2012) Comparison of molecular structure and rheological properties of electron-beam- and gamma-irradiated polypropylene. Macromolecules 45:2057–2065

    Article  Google Scholar 

  • Awaja F, Daver F, Kosior E (2004) Recycled poly(ethylene terephthalate) chain extension by a reactive extrusion process. Polym Eng Sci 44:1579–1587

    Article  Google Scholar 

  • Baumgaertel M, Winter HH (1989) Determination of discrete relaxation and retardation time spectra from dynamic mechanical data. Rheol Acta 28:511–519

    Article  Google Scholar 

  • Berkowitz SA (1984) Viscosity-molecular weight relationships for poly(ethylene terephthalate) in hexafluoroisopropanol pentauorophenol using SEC-LALLS. Polymer 29:4353–4361

    Google Scholar 

  • Berry GC (1968) Translational frictional constant of comb-branched polymers. J Polym Sci A-2 Polym Phys 6:1551–1554

    Article  Google Scholar 

  • Berry GC (1988) Remarks on a relation among the intrinsic viscosity, the radius of gyration, and the translational friction coefficient. J Polym Sci B Polym Phys 26:1137–1142

    Article  Google Scholar 

  • Chambon F, Winter HH (1987) Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry. J Rheol 31:683–697

    Article  Google Scholar 

  • Coccorullo I, Di Maio L, Montesano S, Incarnato L (2009) Theoretical and experimental study of foaming process with chain extended recycled PET. Polymer 3:84–96

    Google Scholar 

  • Daver F, Gupta R, Kosior E (2008) Rheological characterisation of recycled poly(ethylene terephthalate) modified by reactive extrusion. J Mater Process Technol 204:397–402

    Article  Google Scholar 

  • Dekmezian AH, Weng W, Garcia-Franco CA, Markel EJ (2004) Melt strength of blends of linear low density polyethylene and comb polymers. Polymer 45:5635–5640

    Article  Google Scholar 

  • Doi M, Edwards SF (1978) Dynamics of concentrated polymer systems. 2. Molecular-motion under flow. J Chem Soc Faraday Trans II 74:1802–1817

    Article  Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, Oxford

    Google Scholar 

  • Gabriel C, Münstedt H (2003) Strain hardening of various polyolefins in uniaxial elongational flow. J Rheol 47:619–630

    Article  Google Scholar 

  • Härth M, Kaschta J, Schubert DW (2014) Shear and elongational flow properties of longchain branched poly(ethylene terephthalates) and correlations to their molecular structure. Macromolecules 47:4471–4478

    Article  Google Scholar 

  • Hatzikiriakos SG, Heffner G, Vlassopoulos D, Christodoulou D (1997) Rheological characterization of polyethylene terephthalate resins using a multimode Phan-Tien-Tanner constitutive relation. Rheol Acta 36:568–578

    Article  Google Scholar 

  • Huang Q, Rasmussen HK, Skov AL, Hassager O (2012) Stress relaxation and reversed flow of low-density polyethylene melts following uniaxial extension. J Rheol 56:1535–1554

    Article  Google Scholar 

  • Huang Q, Mangnus M, Alvarez NJ, Koopmans R, Hassager O (2016) A new look at extensional rheology of low-density polyethylene. Rheol Acta 55:343–350

    Article  Google Scholar 

  • Incarnato L, Scarfato P, Di Maio L, Acierno D (2000) Structure and rheology of recycled PET modified by reactive extrusion. Polymer 41:6825–6831

    Article  Google Scholar 

  • Japon S, Boogh L, Leterrier Y, Ma JE (2000) Reactive processing of poly(ethylene terephthalate) modified with multifunctional epoxy-based additives. Polymer 41:5809–5818

    Article  Google Scholar 

  • Japon S, Luciani A, Nguyen QT, Leterrier Y, Manson JAE (2001) Molecular characterization and rheological properties of modified poly(ethylene terephthalate) obtained by reactive extrusion. Polym Eng Sci 41:1299–1309

    Article  Google Scholar 

  • Kheirandish S (2005) Constitutive equations for linear and long-chain-branched polymer melts. PhD Thesis, Berlin

  • Kil SB, Augros T, Leterrier Y, Manson JAE, Christel A, Borer C (2003) Rheological properties of hyperbranched polymer/poly(ethylene terephthalate) reactive blends. Polym Eng Sci 43:329–343

    Article  Google Scholar 

  • Kratochvil P (1972) In: Huglin MB (ed) Particle scattering function, light scattering from polymer solutions. Academic Press, London

    Google Scholar 

  • Kruse M (2017) From linear to long-chain branched polyethylene(terephthalate) – reactive extrusion, rheology, and molecular characterization. PhD Thesis, Berlin

  • Kruse M, Wagner MH (2016) Time-resolved rheometry of poly(ethylene terephthalate) during thermal and thermo-oxidative degradation. Rheol Acta 55:789–800

    Article  Google Scholar 

  • Kruse M, Rolón-Garrido VH, Wagner MH (2013) Rheological characterization of degradation and polycondensation of poly(ethylene terephthalate) melt in air and in nitrogen. AIP Conf Proc 1526:216–229

    Article  Google Scholar 

  • Larson R (1999) The structure and rheology of complex fluids. Oxford University Press, New York

    Google Scholar 

  • Lohse DJ, Milner ST, Fetters LJ, Xenidou M, Hadjichristidis N, Mendelson RA, García-Franco CA, Lyon MK (2002) Well-defined, model long chain branched polyethylene. 2. Melt rheological behavior. Macromolecules 35:3066–3075

    Article  Google Scholar 

  • Ma Y, Agarwal US, Sikkema DJ, Lemstra PJ (2003) Solid-state polymerization of PET: influence of nitrogen sweep and high vacuum. Polymer 44:4085–4096

  • Marrucci G, Grizzuti N (1983) The free energy function relaxation of the Doi-Edwards theory: analysis of the instabilities in stress. J Rheol 27:433–450

    Article  Google Scholar 

  • McLeish TCB, Milner ST (1999) Entangled dynamics and melt flow of branched polymers. Adv Polym Sci 143:195–256

    Article  Google Scholar 

  • Mori S, Barth HG (1999) Size exclusion chromatography. Springer, Berlin

    Book  Google Scholar 

  • Münstedt H, Kurzbeck S, Stange J (2006) Importance of elongational properties of polymer melts for film blowing and thermoforming. Polym Eng Sci 46:1190–1195

    Article  Google Scholar 

  • Ogura K, Wagner MH (2013) Rheological characterization of cross-linked poly(methyl methacrylate). Rheol Acta 52:753–765

    Article  Google Scholar 

  • Ogura K, Morioka K, Tsujii Y, Hsu SY, Wagner MH (2015) Uniaxial extensional flow behavior of comb-shaped poly(methyl methacrylate). J Polym Sci 54:637–645

    Google Scholar 

  • Podzimek S (2011) Light scattering, size exclusion chromatography and asymmetric flow field flow fractionation: powerful tools for the characterization of polymers, proteins and nanoparticles. John Wiley & Sons, New Jersey

    Book  Google Scholar 

  • Podzimek S (2013) Importance of multi-angle light scattering in polyolefin characterization. Macromol Symp 330:81–91

    Article  Google Scholar 

  • Radke W, Müller AHE (2005) Synthesis and characterization of comb-shaped polymers by SEC with on-line light scattering and viscometry detection. Macromolecules 38:3949–3960

    Article  Google Scholar 

  • Raible T, Demarmels A, Meissner J (1979) Stress and recovery maxima in LDPE melt elongation. Polym Bull 1:397–402

    Article  Google Scholar 

  • Rasmussen HK, Nielsen JK, Bach A, Hassager O (2005) Viscosity overshoot in the start-up of uniaxial elongation of low density polyethylene melts. J Rheol 49:369–381

    Article  Google Scholar 

  • Rolón-Garrido VH (2014) The molecular stress function (MSF) model in rheology. Rheol Acta 53:663–700

    Article  Google Scholar 

  • Rolón-Garrido VH, Wagner MH (2007) The MSF model: relation of nonlinear parameters to molecular structure of long-chain branched polymer melts. Rheol Acta 46:583–593

    Article  Google Scholar 

  • Rolón-Garrido VH, Wagner MH (2014) Elongational rheology and cohesive fracture of photooxidated LDPE. J Rheol 58:199–222

    Article  Google Scholar 

  • Rolón-Garrido VH, Kruse M, Wagner MH (2015) Size exclusion chromatography of photooxidated LDPE by triple detection and its relation to rheological behavior. Polym Degrad Stab 111:46–54

    Article  Google Scholar 

  • Rubinstein M, Colby RH (2003) Polymer physics, 1nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Sentmanat ML (2004) Miniature universal testing platform: from extensional melt rheology to solid-state deformation behavior. Rheol Acta 43:657–669

    Article  Google Scholar 

  • Trinkle S, Friedrich C (2001) Van Gurp-Palmen-plot: a way to characterize polydispersity of linear polymers. Rheol Acta 40:322–328

    Article  Google Scholar 

  • Trinkle S, Walter P, Friedrich C (2002) Van Gurp-Palmen plot II—classification of long chain branched polymers by their topology. Rheol Acta 41:103–113

    Article  Google Scholar 

  • Utracki A, Catani AM, Bata GL, Kamal MR, Tam V (1982) Melt rheology of blends of semi-crystalline polymers. 1. Degradation and viscosity of poly(ethylene terephthalate)-polyamide-6,6 mixtures J. Appl Polym Sci 27:1913–1931

    Article  Google Scholar 

  • Van Gurp M, Palmen J (1998) Time-temperature superposition for polymeric blends. Rheol Bull 67:5–8

    Google Scholar 

  • Van Krevelen DW (1976) Properties of polymers, 2nd edn. Elsevier Science, Amsterdam

    Google Scholar 

  • Van Ruymbeke E, Keunings R, Bailly C (2002) Determination of the molecular weight distribution of entangled linear polymers from linear viscoelasticity data. J Non-Newtonian 105:153–175

    Article  Google Scholar 

  • Wagner MH (2006) Modeling nonlinear rheology of polydisperse polymer melts. Int J Appl Mech Eng 11:255–267

    Google Scholar 

  • Wagner MH, Schaeffer J (1992) Nonlinear strain measures for general biaxial extension of polymer melts. J Rheol 36:1–26

    Article  Google Scholar 

  • Wagner MH, Schaeffer J (1993) Rubbers and polymer melts: universal aspects of nonlinear stress-strain relations. J Rheol 37:643–661

    Article  Google Scholar 

  • Wagner MH, Bastian H, Ehrecke P, Kraft M, Hachmann P, Meissner J (1998) Nonlinear viscoelastic characterization of a linear polyethylene (HDPE) melt in rotational and irrotational flows. J Non-Newtonian Fluid Mech 79:283–296

    Article  Google Scholar 

  • Wagner MH, Bastian H, Hachmann P, Meissner J, Kurzbeck S, Münstedt H, Langouche F (2000) The strain-hardening behaviour of linear and long-chain-branched polyolefin melts in extensional flows. Rheol Acta 39:97–109

    Article  Google Scholar 

  • Wagner MH, Rubio P, Bastian H (2001) The molecular stress function model for polydisperse polymer melts with dissipative convective constraint release. J Rheol 45:1387–1412

    Article  Google Scholar 

  • Wagner MH, Yamaguchi M, Takahashi M (2003) Quantitative assessment of strain hardening of low-density polyethylene melts by the molecular stress function model. J Rheol 47:779–793

    Article  Google Scholar 

  • Wagner MH, Hepperle J, Münstedt H (2004) Relating rheology and molecular structure of model branched polystyrene melts by molecular stress. J Rheol 48:489–503

    Article  Google Scholar 

  • Wagner MH, Kheirandish S, Koyama K, Nishioka A, Minegishi A, Takahashi T (2005) Modeling strain hardening of polydisperse polystyrene melts by molecular stress function theory. Rheol Acta 44:235–243

    Article  Google Scholar 

  • Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a cross-linking polymer at the gel point. J Rheol 30:367–382

    Article  Google Scholar 

  • Xanthos M (1992) In reactive extrusion. Oxford University Press, Munich

    Google Scholar 

  • Xanthos M, Wan C, Dhavalikar R, Karayannidis GP, Bikiaris DN (2004) Identification of rheological and structural characteristics of foamable poly(ethylene terephthalate) by reactive extrusion. Polymer International 53:1161–1168

  • Yu K, Marina JMR, Rasmussen HK, Hassager O (2010) 3D modeling of dual wind-up extensional rheometers. J Non-Newtonian Fluid Mech 165:14–23

    Article  Google Scholar 

  • Zimm BH, Kilb RW (1959) Dynamics of branched polymer molecules in dilute solution. J Polym Sci 37:19–42

    Article  Google Scholar 

  • Zimm BH, Stockmayer W (1949) The dimensions of chain molecules containing branches and rings. J Chem Phys 17:1301–1314

    Article  Google Scholar 

Download references

Acknowledgements

Financial support by the German Research Foundation (DFG) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Kruse.

Electronic supplementary material

ESM 1

(PDF 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruse, M., Wagner, M.H. Rheological and molecular characterization of long-chain branched poly(ethylene terephthalate). Rheol Acta 56, 887–904 (2017). https://doi.org/10.1007/s00397-017-1043-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-017-1043-y

Keywords

Navigation