Skip to main content
Log in

Branched polyester based on the polyethylene tere/iso phthalate and trimellitic anhydride as branching agent

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Branched polyesters based on the polyethylene terephthalate were synthesized by incorporating isophthalic acid (IPA) and trimellitic anhydride (TMA). TMA has the branching agent role. During the esterification step, only terephthalic acid, IPA, and ethylene glycol were reacted and TMA was added at the beginning of the polycondensation step. Reaction progress was studied using water production and mixing torque increase during esterification and polycondensation steps, respectively. Polycondensation time increases with IPA and decreases with TMA. Fourier transform infrared spectroscopy spectrum shows the production of polyester. Randomness and sequence length were studied using 13CNMR. Results reveal that randomness increases with TMA. Crystallinity and morphology of samples were studied using differential scanning microscopy (DSC). DSC thermograms show that samples turn to an amorphous structure by adding IPA and TMA with decreasing glass transition temperature, Tg. X-ray diffraction spectra approve changing nature similar to DSC results. Dynamic light scattering results present that with an increase in TMA, some size-increasing particles were detected. The rheological behavior of samples was studied using RMS. By adding TMA, the elastic behavior of samples changes to viscous behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

On request, it will be handed.

References

  1. Gupta VB, Bashir Z (2002) Handbook of Thermoplastic Polyesters: Homopolymers, Copolymers. Wiley-VCH Verlag GmbH, Weinheim, Blends and Composites

    Google Scholar 

  2. Scheirs J, Long TE (2005) Modern polyesters: chemistry and technology of polyesters and copolyesters. John Wiley & Sons, West Sussex

    Google Scholar 

  3. Fei B (2018) High-performance fibers for textiles. In: Miao M, Xin J (eds) Engineering of High-Performance Textiles, 1st edn. Woodhead Publishing, pp 27–58

    Chapter  Google Scholar 

  4. Korivi NS (2015) Preparation, characterization, and applications of poly (ethylene terephthalate) nanocomposites. In: Mittal V (ed) Manufacturing of Nanocomposites with Engineering Plastics, 1st edn. Woodhead Publishing, pp 167–98

    Chapter  Google Scholar 

  5. Zekriardehani S, Joshi AS, Jabarin SA, Gidley DW, Coleman MR (2018) Effect of dimethyl terephthalate and dimethyl isophthalate on the free volume and barrier properties of poly (ethylene terephthalate)(PET): amorphous PET. Macromolecules 51(2):456–467. https://doi.org/10.1021/acs.macromol.7b02230

    Article  CAS  Google Scholar 

  6. Liu RYF, Hu YS, Hibbs MR, Collard DM, Schiraldi DA, Hiltner A, Baer E (2005) Improving oxygen barrier properties of poly (ethylene terephthalate) by incorporating isophthalate. I. Effect of orientation. J Appl Polymer Sci 98(4):1615–1628. https://doi.org/10.1002/app.22213

    Article  CAS  Google Scholar 

  7. Hu YS, Hiltner A, Baer E (2005) Improving oxygen barrier properties of poly (ethylene terephthalate) by incorporating isophthalate. II. Effect of crystallization. J Appl Polymer Sci 98(4):1629–1642. https://doi.org/10.1002/app.22214

    Article  CAS  Google Scholar 

  8. Jayakannan M, Ramakrishnan S (1999) Effect of branching on the crystallization kinetics of poly (ethylene terephthalate). J Appl Polym Sci 74(1):59–66. https://doi.org/10.1002/(SICI)1097-4628(19991003)74:1%3c59::AID-APP6%3e3.0.CO;2-0

    Article  CAS  Google Scholar 

  9. Verhoyen O, Dupret F, Legras R (1998) Isothermal and non-isothermal crystallization kinetics of polyethylene terephthalate: mathematical modeling and experimental measurement. Polym Eng Sci 38(9):1594–1610

    Article  CAS  Google Scholar 

  10. Karayannidis GP, Sideridou ID, Zamboulis DN, Bikiaris DN, Sakalis AJ (2000) Thermal behavior and tensile properties of poly (ethylene terephthalate-co-ethylene isophthalate). J Appl Polymer Sci 78(1):200–207. https://doi.org/10.1002/1097-4628(20001003)78:1%3c200::AID-APP240%3e3.0.CO;2-R

    Article  CAS  Google Scholar 

  11. Gaonkar AA, Murudkar VV, Deshpande VD (2020) Comparison of crystallization kinetics of polyethylene terephthalate (PET) and reorganized PET. Thermochimica Acta 683:178472

    Article  CAS  Google Scholar 

  12. Yu J, Li B, Lee S, Ree M (1999) Relationship between physical properties and chemical structures of poly (ethylene terephthalate-co-ethylene isophthalate). J Appl Polym Sci 73(7):1191–1195. https://doi.org/10.1002/(SICI)1097-4628(19990815)73:7%3c1191::AID-APP12%3e3.0.CO;2-S

    Article  CAS  Google Scholar 

  13. Ubach J, de Ilarduya AM, Quintana R, Alla A, Rudé E, Muñoz-Guerra S (2010) Poly (ethylene terephthalate-co-isophthalate) copolyesters obtained from ethylene terephthalate and isophthalate oligomers. J Appl Polym Sci 115(3):1823–1830. https://doi.org/10.1002/app.31308

    Article  CAS  Google Scholar 

  14. Manaresi P, Munari A, Pilati F, Alfonso GC, Russo S, Sartirana ML (1986) Synthesis and characterization of highly-branched poly (ethylene terephthalate). Polymer 27(6):955–960. https://doi.org/10.1016/0032-3861(86)90311-3

    Article  CAS  Google Scholar 

  15. Hudson N, MacDonald WA, Neilson A, Richards RW, Sherrington DC (2000) Synthesis and characterization of nonlinear PETs produced via a balance of branching and end-capping. Macromolecules 33(25):9255–9261. https://doi.org/10.1021/ma000656c

    Article  CAS  Google Scholar 

  16. Qiu T, Tang L, Fu Z, Tuo X, Li Y, Liu D, Yang W (2004) Modification of end-groups of aliphatic hyperbranched polyester. Polym Adv Technol 15(1–2):65–69. https://doi.org/10.1002/pat.432

    Article  CAS  Google Scholar 

  17. Ma S, Qian J, Zhuang Q, Li X, Kou W, Peng S (2018) Synthesis and application of water-soluble hyperbranched polyester modified by trimellitic anhydride. J Macromol Sci Part A 55(5):414–421. https://doi.org/10.1080/10601325.2018.1453261

    Article  CAS  Google Scholar 

  18. Chen MH, Lai CC, Chen HL, Lin CH, Hsiao HT, Liu LC, Chen CM (2019) Preparation of long-chain branched polyethylene terephthalates (PETs), and crystallization behaviors, thermal characteristics, and hydrolysis resistance of their biaxially stretching films. J Phys Chem Solids 1(129):354–367. https://doi.org/10.1016/j.jpcs.2019.01.031

    Article  CAS  Google Scholar 

  19. Zhang D, Jia D, Chen S (2009) Synthesis and characterization of low viscosity aromatic hyperbranched poly (trimellitic anhydride ethylene glycol) ester epoxy resin. Macromol Chem Phys 210(13–14):1159–1166. https://doi.org/10.1002/macp.200900230

    Article  CAS  Google Scholar 

  20. Zhang D, Chen Y, Jia D (2009) Toughness and reinforcement of diglycidyl ether of bisphenol-A by hyperbranched poly (trimellitic anhydride-butanediol glycol) ester epoxy resin. Polym Compos 30(7):918–925. https://doi.org/10.1002/pc.20633

    Article  CAS  Google Scholar 

  21. Lamberti G, Peters GWM, Titomanlio G (2007) Crystallinity and linear rheological properties of polymers. Int Polym Proc 22(3):303–310. https://doi.org/10.3139/217.2006

    Article  CAS  Google Scholar 

  22. Suneel DMA, Buzza A, Groves DJ, McLeish TCB, Parker D, Keeney AJ, Feast WJ (2002) Rheology and molecular weight distribution of hyperbranched polymers. Macromolecules 35(25):9605–9612. https://doi.org/10.1021/ma020820r

    Article  CAS  Google Scholar 

  23. Kil SB, Augros Y, Leterrier Y, Månson JAE, Christel A, Borer C (2003) Rheological properties of hyperbranched polymer/poly (ethylene terephthalate) reactive blends. Polym Eng Sci 43(2):329–343. https://doi.org/10.1002/pen.10028

    Article  CAS  Google Scholar 

  24. Kruse M, Wagner MH (2017) Rheological and molecular characterization of long-chain branched poly (ethylene terephthalate). Rheol Acta 56(11):887–904. https://doi.org/10.1007/s00397-017-1043-y

    Article  CAS  Google Scholar 

  25. Zhang F, Kang H, Bai Y, Jiang B, Huang Y, Liu L (2016) Catalytic property of poly (ethylene terephthalate-co-isophthalate) synthesized with a novel Sb/Al bimetallic compound catalyst. RSC Adv 6(72):67677–67684. https://doi.org/10.1039/C6RA09055A

    Article  CAS  Google Scholar 

  26. Charles J, Ramkumaar GR (2009) FTIR and thermal studies on polyethylene terephthalate and acrylonitrile butadiene styrene. Asian J Chem 21(6):4389–4398

    CAS  Google Scholar 

  27. Mayouf I, Guessoum M, Fuensanta M, Martìnez JMM (2020) Appraisal of ε-Caprolactam and Trimellitic Anhydride Potential as Novel Chain Extenders for Poly(lactic acid). Polymer Eng Sci 60(5):944–955. https://doi.org/10.1002/pen.25350

    Article  CAS  Google Scholar 

  28. De Luca E, Richards RW (2003) Molecular characterization of a hyperbranched polyester. I. Dilute solution properties. J Polymer Sci Part B: Polymer Phys 41(12):1339–1351. https://doi.org/10.1002/polb.10463

    Article  CAS  Google Scholar 

  29. de Ilarduya AM, Kint DPR, Muñoz-Guerra S (2000) Sequence analysis of poly (ethylene terephthalate-co-isophthalate) copolymers by 13CNMR. Macromolecules 33(12):4596–4598. https://doi.org/10.1021/ma991882t

    Article  CAS  Google Scholar 

  30. Lbbett RN (1993) NMR spectroscopy of polymers. Blackie Academic & Professional

    Google Scholar 

  31. Johnson JE (1959) X-ray diffraction studies of the crystallinity in polyethylene terephthalate. J Appl Polym Sci 2(5):205–209. https://doi.org/10.1002/app.1959.070020514

    Article  CAS  Google Scholar 

  32. Aoyama S, Ismail I, Park YT, Yoshida Y, Macosko CW, Ougizawa T (2018) Polyethylene terephthalate/trimellitic anhydride modified graphene nanocomposites. ACS Appl Nano Mater 1(11):6301–6311. https://doi.org/10.1021/acsanm.8b01525

    Article  CAS  Google Scholar 

  33. Kharchenko SB, Kannan RM (2003) Role of architecture on the conformation, rheology, and orientation behavior of linear, star, and hyperbranched polymer melts. 2. Linear viscoelasticity and flow birefringence. Macromolecules 36(2):407–415. https://doi.org/10.1021/ma025649y

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors have enough contribution in this work.

Corresponding author

Correspondence to Mehdi Rafizadeh.

Ethics declarations

Conflict of interest

Author declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi Avarzman, A., Rafizadeh, M. & Afshar Taromi, F. Branched polyester based on the polyethylene tere/iso phthalate and trimellitic anhydride as branching agent. Polym. Bull. 79, 6099–6121 (2022). https://doi.org/10.1007/s00289-021-03802-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03802-x

Keywords

Navigation