Skip to main content
Log in

Stress relaxation of bi-disperse polystyrene melts

Exploring the interactions between long and short chains in non-linear rheology

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

We present start-up of uniaxial extension followed by stress relaxation experiments of a bi-disperse 50 % by weight blend of 95k and 545k molecular weight polystyrene. We also show, for comparison, stress relaxation measurements of the polystyrene melts with molecular weight 95k and 545k, which are the components of the bi-disperse melt. The measurements show three separated relaxation regimes: a fast regime, a transition regime, and a slow regime. In the fast regime, the orientation of the long chains is frozen and the stress relaxation is due to stretch relaxation of the short chains primarily. Conversely in the slow regime, the long chains have retracted and undergo relaxation of orientation in fully relaxed short chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Auhl D, Chambon P, McLeish T C B, Read D J (2009) Elongational flow of blends of long and short polymers: effective stretch relaxation time. Phys Rev Lett 136001:103

    Google Scholar 

  • Andreev M, Khaliullin R N, Steenbakkers R J A, Schieber J D (2013) Approximations of the discrete slip-link model and their effect on nonlinear rheology predictions. J Rheol 57(2):535–557

    Article  Google Scholar 

  • Bach A, Almdal K, Rasmussen H K, Hassager O (2003a) Elongational viscosity of narrow molar mass distribution polystyrene. Macromolecules 36:5174–5179

  • Bach A, Rasmussen H K, Hassager O (2003b) Extensional viscosity for polymer melts measured in the filament stretching rheometer. J Rheol 47(2):429–441

  • Baumgaertel M, Schausberger A, Winter H H (1990) The relaxation of polymers with linear flexible chains of uniform length. Rheol Acta 29:400–408

    Article  Google Scholar 

  • des Cloizeaux J (1988) Double reptation vs. simple reptation in polymer melts. J Europhys Lett 5:437–432

    Article  Google Scholar 

  • de Gennes P G (1975) Dynamics of entangled polymer solutions. II Inclusion of hydrodynamic interactions. Macromolecules 9:594–598

    Article  Google Scholar 

  • Doi M, Edwards S F (1986) The theory of polymer dynamics. Clarendon Press, Oxford

    Google Scholar 

  • Hayes C, Bokobza L, Boué F, Mendes E, Monnerie L (1996) Relaxation dynamics in bimodal polystyrene melts: a Fourier-transform infrared dichroism and small-angle neutron scattering study. Macromolecules 29:5036–5041

    Article  Google Scholar 

  • Huang Q, Alvarez N J, Matzumiya Y, Rasmussen H K, Watanabe H, Hassager O (2013a) Extensional rheology of entangled polystyrene solutions suggests importance of nematic interaction. ACS Macro Letters 2:741–744

  • Huang Q, Mednova O, Rasmussen H K, Alvarez N J, Skov A L, Almdal K, Hassager O (2013b) Concentrated polymer solutions are different from melts: role of entanglement molecular weight. Macromolecules 46:5026–5035

  • Ianniruberto G, Brasiello A, Marrucci G (2012) Simulations of fast shear flows of PS oligomers confirm monomeric friction reduction in fast elongational flows of monodisperse PS melts as indicated by rheo-optical data. Macromolecules 45:8058–8066

    Article  Google Scholar 

  • Likhtman A E, McLeish T C B (2002) Quantitative theory for linear dynamics of linear entangled polymers. Macromolecules 35:6332–6343

    Article  Google Scholar 

  • Khaliullin R N, Schieber J D (2010) Application of the Slip-link Model to Bidisperse Systems. Macromolecules 43(14):6201–6212

    Article  Google Scholar 

  • Kolte M I, Rasmussen H K, Hassager O (1997) Transient filament stretching rheometer: II Numerical simulation. Rheol Acta 36(3):285–302

    Google Scholar 

  • Kornfield J. A., Fuller G., Pearson D. S. (1989) Infrared dichroism measurements of molecular relaxation in binary blend melt rheology. Macromolecules 22:1334–1345

    Article  Google Scholar 

  • Lee J H, Fetters L J, Archer L A, Halasa A F (2005) Tube dynamics in binary polymer blends. Macromolecules 38:3917–3932

    Article  Google Scholar 

  • Lyhne A, Rasmussen H K, Hassager O (2009) Simulation of elastic rupture in extension of entangled monodisperse polymer melts. Phys Rev Lett 102(138301)

  • Marrucci G (1985) Relaxation by reptation and tube enlargement: a model for polydisperse polymers. J Polym Sci Polym Phys Ed 23:159–177

    Article  Google Scholar 

  • Milner S T, McLeish T C B (1998) Reptation and Contour-Length fluctuations in melts of linear polymers. Phys Rev Lett 81:725–728

    Article  Google Scholar 

  • Ndoni S, Papadakis C M, Bates F S, Almdal K (1995) Laboratory-scale setup for anionic polymerization under inert atmosphere. Rev Sci Instrum 66:1090–1095

    Article  Google Scholar 

  • Nielsen J K, Rasmussen H K, Hassager O, McKinley G H (2006) Elongational viscosity of monodisperse and bi-disperse polystyrene melts. J Rheol 50:453–476

    Article  Google Scholar 

  • Nielsen J K, Rasmussen H K, Hassager O (2008) Stress relaxation of narrow molar mass distribution polystyrene following uniaxial extension. J Rheol 52(4):885–899

    Article  Google Scholar 

  • Park S J, Larson R G (2004) Tube dilation and reptation in binary blends of monodisperse linear polymers. Macromolecules 37:597–604

    Article  Google Scholar 

  • Rasmussen H K, Bejenariu A G, Hassager O, Auhl D J (2010) Experimental evaluation of the pure configurational stress assumption in the flow dynamics of entangled polymer melts. J Rheol 54(6):1325–1336

    Article  Google Scholar 

  • Rasmussen H K (2014) Interchain tube pressure effect in the flow dynamics of bi-disperse polymer melts. Rheol Acta 54:9–18

    Article  Google Scholar 

  • Read D J, Jagannathan K, Sukumaran S K, Auhl D (2012) A full-chain constitutive model for bidisperse blends of linear polymers. J Rheol 56:823–873

    Article  Google Scholar 

  • Román Marín J M, Huusom J K, Alvarez N J, Huang Q, Rasmussen H K, Bach A, Skov A L, Hassager O (2013) A control scheme for filament stretching rheometers with application to polymer melts. J Non-Newtonian Fluid Mech 194:14–22

    Article  Google Scholar 

  • Szabo P (1997) Transient filament stretching rheometer part: I Force balance analysis. Rheol Acta 36:277–284

    Google Scholar 

  • Szabo P, McKinley G H (2003) Filament stretching rheometer: inertia compensation revisited. Rheol Acta 42:269–271

    Google Scholar 

  • Struglinski M J (1985) WWGRaessley. Effect of polydispersity on the linear viscoelastic properties of entangled polymers. 1. Experimental observation for binary mixtures of linear polybutadiene, Macromolecules 18:2630–2643

    Google Scholar 

  • Struglinski M J, Graessley W W (1986) Effect of polydispersity on the linear viscoelastic properties of entangled polymers. 2. Comparison of viscosity and recoverable compliance with tube model predictions. Macromolecules 19:1754–1760

    Article  Google Scholar 

  • Tsenoglou C (1987) Viscoelasticity of binary polymer blends. ACS Polym Preprints 28:185–186

    Google Scholar 

  • van Ruymbeke E, Masubuchi Y, Watanabe H (2012) Effective value of the dynamic dilution exponent in bidisperse linear polymers: from 1 to 4/3. Macromolecules 45:2085–2098

    Article  Google Scholar 

  • van Ruymbeke E, Nielsen J, Hassager O (2010) Linear and nonlinear viscoelastic properties of bidisperse linear polymers: mixing law and tube pressure effect. J Rheol 54(5):1155–1172

    Article  Google Scholar 

  • van Ruymbeke E, Shchetnikava V, Matsumiya Y, Watanabe H (2014) Dynamic dilution effect in binary blends of linear polymers with well-separated molecular weights. Macromolecules 47:7653–7665

    Article  Google Scholar 

  • Wagner M H, Kheirandish S, Koyama K, Nishioka A, Minegishi A, Takahashi T (2005) Modelling strain hardening of polydisperse polystyrene melts by molecular by molecular stress function theory. Rheol Acta 44:235–243

    Article  Google Scholar 

  • Wagner M (2011) The effect of dynamic tube dilation on chain stretch in nonlinear polymer melt rheology. J of Non-Newtonian Fluid Mech 166:915–924

    Article  Google Scholar 

  • Wang Y, Boukany P, Wang S Q, Wang X (2007) Elastic breakup in uniaxial extension of entangled polymer melts. Phys Rev Lett 237801:99

    Google Scholar 

  • Watanabe H, Ishida S, Matzumiya Y, Inoue T (2004a) Viscoelastic and dielectric behavior of entangled blends of linear polyisoprenes having widely separated molecular weights: test of tube dilation picture. Macromolecules 37:1937–1951

  • Watanabe H, Ishida S, Matzumiya Y, Inoue T (2004b) Test of full and partial tube dilation pictures in entangled blends of linear polyisoprenes. Macromolecules 37:6619–6631

  • Watanabe H, Matzumiya Y, Ruymbeke E V (2013) Component relaxation times in entangled binary blends of linear chains: reputation/CLF along partially or fully dilated tube. Macromolecules 46:9296–9312

    Article  Google Scholar 

  • Yaoita T, Takeharu I, Masubuchi Y, Watanabe H, Ianniruberto G, Marrucci G (2012) Primitive chain network simulation of elongational flows of entangled linear chains: stretch/orientation-induced reduction of monomeric friction. Macromolecules 45:2773–2782

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the Danish Council for Independent Research - Natural Sciences under EPMEF on Grant 0602-02179B, and Aage og Johanne Louis-Hansens Fond. We would like to thank the anonymous reviewers for constructive observations and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ole Hassager.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hengeller, L., Huang, Q., Dorokhin, A. et al. Stress relaxation of bi-disperse polystyrene melts. Rheol Acta 55, 303–314 (2016). https://doi.org/10.1007/s00397-016-0916-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-016-0916-9

Keywords

Navigation