Skip to main content
Log in

The effect of cholesterol and triglycerides on the steady state shear rheology of blood

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

We examine here the effect of cholesterol and triglycerides on the steady state shear blood flow rheology. We use the recent viscosity data of both high and low cholesterol/triglyceride donors reported by Moreno et al. (Korea-Aust Rheol J 27(1):1–10, 2015). We show that while the Casson model describes well the blood rheology, its model parameters need to be significantly modified from their physiological value expressions developed by Apostolidis and Beris (J Rheol 58(3):607–633, 2014). The modifications are parametrized with indices that all ratios: total cholesterol (TC) to high density pipoprotein (HDL), low-density lipoprotein (LDL) to HDL, and total triglyceride to HDL. These ratios, while they arise here naturally in the fitting of the data, they have all been previously identified as important in medical evaluations to cardiovascular diseases such as atherogenesis and stroke. We thus provide additional evidence for plausible causal link between cholesterol/triglycerides and cardiovascular conditions through their impact on blood flow rheology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anand M, Rajagopal KR (2004) A shear-thinning viscoelastic fluid model for describing the flow of blood. Int J Cardiovasc Med Sci 4:59–68

    Google Scholar 

  • Anand M, Kwack J, Masud A (2013) A new generalized Oldroyd-B model for blood flow in complex geometries. Int J Eng Sci 72:78–88

    Article  Google Scholar 

  • Apostolidis AJ, Beris AN (2014) Modeling of the blood rheology in steady-state shear flows. J Rheol 58(3):607–633

    Article  Google Scholar 

  • Apostolidis AJ, Armstrong MJ, Beris AN (2015) Modeling of the human blood rheology in transient shear flows. J Rheol 59(1):275–298

    Article  Google Scholar 

  • Barnes HA (1999) The yield stress—a review or ‘πάντα ρει’—everything flows? J Non-Newtonian Fluid Mech 81:133–178

    Article  Google Scholar 

  • Bautista FJ, de Santos M, Puig JE, Manero O (1999) Understanding thixotropic and antithixotropic behavior of viscoelastic micellar solutions and liquid crystalline dispersions. J Non-Newtonian Fluid Mech 80:93–113

    Article  Google Scholar 

  • Beris AN, Edwards BJ (1994) Thermodynamics of flowing systems with internal microstructure. Oxford U. Press, New York

    Google Scholar 

  • Beris AN, Mavrantzas VG (1994) On the compatibility between various macroscopic formalisms for the concentration and flow of dilute polymer solutions. J Rheol 38:1235–1250

    Article  Google Scholar 

  • Bird RB, Dai GC, Yarusso BJ (1983) The rheology and flow of viscoplastic materials. Rev Chem Eng 1:1–70

    Google Scholar 

  • Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric fluids, vol 1, 2nd edn. Wiley-Interscience, New York

    Google Scholar 

  • Bureau MJ, Healy C, Bourgoin D, Joly M (1980) Rheological hysteresis of blood at low shear rate. Biorheology 17:191–203

    Google Scholar 

  • Casson N (1959) Flow equations for pigment-oil suspensions of the printing ink type. Rheology of Dispersed Systems, edited by CC Mill. Pergamon Press, New York, pp 84–104

    Google Scholar 

  • Chapman MJ, Ginsberg HN, Amarenco P, Andreotti F, Borén J, Catapano AL et al (2011) Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur Heart J. doi:10.1093/eurheart/ehr112 (23 pages)

    Google Scholar 

  • Chien S, Usami S, Dellenback RJ, Gregersen MI (1970) Shear dependent deformation of erythrocytes in rheology of human blood. Am J Physiol 219:136–142

    Google Scholar 

  • Cho YI, Kensey KR (1991) Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: steady flows. Biorheology 28:241–262

    Google Scholar 

  • Cokelet GR, Merrill EW, Gilliland ER, Shin H, Britten A (1963) The rheology of human blood—measurement near and at zero shear rate. Trans Soc Rheol 7:303–317

    Article  Google Scholar 

  • Cowan AQ, Cho DJ, Rosenson RS (2012) Importance of blood rheology in the pathophysiology of atherosclerosis. Cardiovasc Drugs Ther 26:339–348

    Article  Google Scholar 

  • Crowley JP, Metzger J, Assaf A, Carleton RC, Merrill E, Valeri CR (1994) Low density lipoprotein cholesterol and whole blood viscosity. Ann Clin Lab Sci 24(6):533–541

    Google Scholar 

  • Dintenfass L (1962) Thixotropy of blood and proneness to thrombus formation. Circ Res 11:233–239

    Article  Google Scholar 

  • Fähraeus R (1929) The suspension stability of blood. Physiol Rev 9:241–274

    Google Scholar 

  • Fähraeus R, Lindqvist T (1931) The viscosity of blood in narrow capillary tubes. Am J Physiol 96:562–568

    Google Scholar 

  • Fedosov DA, Caswell B, Popel AS, Karniadakis GE (2010) Blood flow and cell-free layer in microvessels. Microcirculation 17:615–628

    Article  Google Scholar 

  • Fedosov DA, Pan WX, Caswell B, Gompper G, Karniadakis GE (2011) Predicting human blood viscosity in silico. Proc Natl Acad Sci U S A 108:11772–11777

    Article  Google Scholar 

  • Fedosov DA, Noguchi H, Gompper G (2014) Multiscale modeling of blood flow: from single cells to blood rheology. Biomech Model Mechanobiol 13:239–258

    Article  Google Scholar 

  • Forti N, Diament J (2006) High-density lipoproteins: metabolic, clinical, epidemiological and therapeutic intervention aspects. An update for clinicians. Arq Bras Cardiol 87:614–622

    Article  Google Scholar 

  • Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. New York, Springer-Verlag

    Book  Google Scholar 

  • Gonzalez HA, Moraga NO (2005) On predicting unsteady non-Newtonian blood flow. Appl Math Comput 170(2):909–923

    Google Scholar 

  • Happel J, Brenner H (1983) Low Reynolds number hydrodynamics. Martinus Nijhoff Publishers, Hague

    Google Scholar 

  • Haynes RH, Burton AC (1959) Role of the non-Newtonian behavior of blood in hemodynamics. Am J Physiol 197(5):943–950

    Google Scholar 

  • Huang CR, Pan WD, Chen HQ, Copley AL (1987) Thixotropic properties of whole blood. Biorheology 24:795–801

    Google Scholar 

  • Iida N (1978) Influence of plasma layer on steady blood flow in microvessels. Jpn J Appl Phys 17:203–214

    Article  Google Scholar 

  • Joseph DD (1990) Fluid mechanics of viscoelastic liquids. Springer, New York

    Book  Google Scholar 

  • Keener J, Sneyd J (1998) Mathematical physiology. Springer, New York

    Google Scholar 

  • Kensey KR (2003) Rheology: an overlooked component of vascular disease. Clin Appl Thromb Hemost 9(2):93–99

    Article  Google Scholar 

  • Koenig W, Sund M, Ernst E, Mraz W, Hombach V, Keil U (1992) Association between rheology and components of lipoproteins in human blood—results from the MONICA project. Circulation 85(6):2197–2204

    Article  Google Scholar 

  • Kwiterovich PO Jr (2000) The metabolic pathways of high-density lipoprotein, low-density lipoprotein, and triglycerides: a current review. Am J Cardiol 86:5L–10L

    Article  Google Scholar 

  • Li XJ, Peng ZL, Lei H, Dao M, Karniadakis GE (2014) Probing red blood cell mechanics, rheology and dynamics with a two-component multi-scale model. Philos Trans R Soc A Math Phys Eng Sci 372:20130389

    Article  Google Scholar 

  • Mercola JM (2012) Dr. Robert Rowen talks about cholesterol and statins. In: http://articles.mercola.com/sites/articles/archive/2012/05/05/dr-mercola-interviews-dr-robert-rowen-part-2-cholesterol.aspx

  • Merrill EW (1969) Rheology of blood. Physiol Rev 49:863–888

    Google Scholar 

  • Merrill EW, Pelletier GA (1967) Viscosity of human blood: transition from Newtonian to non-Newtonian. J Appl Physiol 23:178–182

    Google Scholar 

  • Merrill EW, Gilliland ER, Cokelet G, Shin H, Britten A, Wells RE Jr (1963) Rheology of human blood, near and at zero flow: effects of temperature and hematocrit level. Biophys J 3:199–213

    Article  Google Scholar 

  • Merrill EW, Benis AM, Gilliland ER, Sherwood TK, Salzman EW (1965) Pressure-flow relations of human blood in hollow fibers at low flow rates. J Appl Physiol 20:954–967

    Google Scholar 

  • Moreno L, Calderas F, Sanchez-Olivares G, Medina-Torres L, Sanchez-Solis A, Manero O (2015) Effect of cholesterol and triglycerides levels on the rheological behavior of human blood. Korea-Aust Rheol J 27(1):1–10

    Article  Google Scholar 

  • Moyers-Gonzalez M, Owens RG, Fang J (2008) A non-homogeneous constitutive model for human blood. Part 1. Model derivation and steady flow. J Fluid Mech 617:324–354

    Article  Google Scholar 

  • Nara M, Sumino H, Nara M, Machida T, Amagai H, Nakajima K, Murakami M (2009) Impaired blood rheology and elevated remnant-like lipoprotein particle cholesterol in hypercholesterolaemic subjects. J Int Med Res 37:308–317

    Article  Google Scholar 

  • Navidi W (2010) Statistics for engineers and scientists, 3rd edn. McGraw-Hill

  • Ogunnaike A (2009) Random phenomena: Fundamentals of probability and statistics for engineers, CRC Press

  • Owens RG (2006) A new microstructure-based constitutive model for human blood. J Non-Newtonian Fluid Mech 140:57–70

    Article  Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P, Gross JF (1990) Blood flow in microvascular networks. Experiments and simulation. Circ Res 67:826–834

    Article  Google Scholar 

  • Quemada D (1978a) Rheology of concentrated disperse systems. II. A model for non-Newtonian shear viscosity in steady flows. Rheol Acta 17:632–642

    Article  Google Scholar 

  • Quemada D (1978b) Rheology of concentrated disperse system. III. General features of the proposed non-Newtonian model. Comparison with experimental data. Rheol Acta 17:643–653

    Article  Google Scholar 

  • Rao MA (2014) Rheology of fluid, semisolid, and solid foods: principles and applications. Springer, New York

    Book  Google Scholar 

  • Robertson AM, Sequeira A, Kameneva MV (2008) Hemorheology. In: Hemodynamical flows. Modeling, ANalysis and Simulation, Oberwolfach Seminars, vol 37, p 63--120

  • Rosenson RS, Shott S, Tangney CC (2002) Hypertriglyceridemia is associated with an elevated blood viscosity. Rosenson: triglycerides and blood viscosity. Atherosclerosis 161(2):433–439

    Article  Google Scholar 

  • Sloop GD (1996) A unifying theory of atherogenesis. Med Hypotheses 47:321–325

    Article  Google Scholar 

  • Sloop GD (1999) A critical analysis of the role of cholesterol in atherogenesis. Atherosclerosis 142(2):265--268

  • Sloop GD, Garber DW (1997) The effects of low-density lipoprotein and high-density lipoprotein on blood viscosity correlate with their association with risk of atherosclerosis in humans. Clin Sci 92:473–479

    Article  Google Scholar 

  • Stamos TD, Rosenson RS (1999) Low high density lipoprotein levels are associated with an elevated blood viscosity. Atherosclerosis 146(1):161–165

    Article  Google Scholar 

  • Sun N, De Kee D (2001) Simple shear, hysteresis and yield stress in biofluids. Can J Chem Eng 79:36–41

    Article  Google Scholar 

  • Sun M, Northup N, Marga F, Huber T, Byfield FJ, Levitan I, Forgacs G (2007) The effect of cellular cholesterol on membrane-cytoskeleton adhesion. J Cell Sci 120:2223–2231

    Article  Google Scholar 

  • Thiriet M (2008) Biology and mechanics of blood flows. Part I: biology. Springer, New York

    Book  Google Scholar 

  • Thurston GB (1972) Viscoelasticity of human blood. Biophys J 12:1205–1217

    Article  Google Scholar 

  • Truskey GA, Yuan F, Katz DF (2009) Transport phenomena in biological systems, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Vitkova V, Mader MA, Polack B, Misbah C, Podgorski T (2008) Micro–macro link in rheology of erythrocyte and vesicle suspensions. Biophys J 95:L33–L35

    Article  Google Scholar 

  • Walburn FJ, Schneck DJ (1976) A constitutive equation for whole human blood. Biorheology 13:201–210

    Google Scholar 

  • Yilmaz F, Gundogdu MY (2008) A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions. Korea-Aust Rheol J 20:197–211

    Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. CBET 1033296. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antony N. Beris.

Additional information

This paper belongs to the special issue on the "Rheology of blood cells, capsules and vesicles".

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apostolidis, A.J., Beris, A.N. The effect of cholesterol and triglycerides on the steady state shear rheology of blood. Rheol Acta 55, 497–509 (2016). https://doi.org/10.1007/s00397-015-0889-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-015-0889-0

Keywords

Navigation