Skip to main content
Log in

Investigating the effect of temperature, angular frequency, and strain on the rheological properties of shear thickening fluid (STF) with different weight fractions of fumed silica

  • Research
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Shear thickening fluids (STFs) have gained attention for their capacity to increase viscosity with higher shear rates, rendering them solid-like under high-impact conditions. This reversibility renders STFs valuable for diverse applications, particularly in defense systems. Preceding our study, mechanical hurdles, such as aggregation and blending issues, hindered efficient utilization. Our research presents an innovative method for STF synthesis using polyethylene glycol and SiO2 nanoparticles. Significantly, we employed a hot plate and oil bath to remove ethanol from the STF, a distinctive aspect of our approach. We also systematically explored the impact of temperature and the dispersion weight fraction of fumed silica nanoparticles on crucial rheological parameters, encompassing viscosity, shear rate, storage modulus (G′), and loss modulus (G″). As temperatures increased, the critical shear rate also rose, while viscosity decreased. Additionally, we observed a significant enhancement in thickening behavior with higher SiO2 concentrations in STFs. For instance, the peak viscosity of 15 wt% STF decreased by approximately 69.47% from 20 to 40 °C and by approximately 89.92% from 20 to 60 °C. This study highlights the unique rheological properties of STFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

Data and materials will be available upon request.

References

  1. Boersma WH, Laven J, Stein HN (1990) Shear thickening (dilatancy) in concentrated dispersions. AIChE J 36:321–332

    Article  CAS  Google Scholar 

  2. Lee YS, Wagner NJ (2006) Rheological properties and small-angle neutron-scattering of a shear thickening, nanoparticle dispersion at high shear rates. Ind Eng Chem Res 45:7015–7024

    Article  CAS  Google Scholar 

  3. Wagner NJ, Brady JF (2009) Shear thickening in colloidal dispersions. Phys Today 62:27–32

    Article  CAS  Google Scholar 

  4. Lee YS, Wagner NJ (2003) Dynamic properties of shear thickening colloidal suspensions. Rheol Acta 42:199–208

    Article  CAS  Google Scholar 

  5. Hasannezhad, H, Yazdani M (2022) Investigate the dynamic compressive (cushioning) response of 3D GFRP composites when the STF matrix base material is modified PEG, J Mol Liq 366:120304. https://doi.org/10.1016/j.molliq.2022.120304

  6. Yu M, Qiao X, Dong X et al (2018) Effect of particle modification on the shear thickening behaviors of the suspensions of silica nanoparticles in PEG. Colloid Polym Sci 296:1767–1776

    Article  CAS  Google Scholar 

  7. Shende T, Joekar-Niasar V, Babaei M (2021) An empirical equation for shear viscosity of shear thickening fluids 325:115220–115220. https://doi.org/10.1016/j.molliq.2020.115220

    Article  CAS  Google Scholar 

  8. Islam E, Kaur G, Bhattacharjee D et al (2018) Effect of cellulose beads on shear-thickening behavior in concentrated polymer dispersions. Colloid Polym Sci 296:883–893

    Article  CAS  Google Scholar 

  9. Mohsen Jeddi M, Yazdani Hossein Hasannezhad (2021) Experimental study on puncture resistance of 2D and 3D glass fabrics reinforced with shear thickening fluid (STF). https://doi.org/10.22060/ajme.2021.19920.5973

  10. Guo F, Xu Z, Gu J (2023) Effects of nano-fumed silica and carbonyl iron powder of different particle sizes on the rheological properties of shear thickening fluids. Colloid Polym Sci 301:539–555

    Article  CAS  Google Scholar 

  11. Arun M, Sivagami SM, Raja Vijay T, Vignesh G (2023) Experimental investigation on energy and exergy analysis of solar water heating system using zinc oxide-based Nanofluid. Arab J Sci Eng 48(3):3977–3988

    Article  CAS  Google Scholar 

  12. Munusamy A, Barik D, Sharma P, Medhi BJ, Bora BJ (2023) Performance analysis of parabolic type solar water heater by using copper-dimpled tube with aluminum coating. Environ Sci Pollut Res 9:1–6

    Google Scholar 

  13. Barik D, Saeed MA, Ramachandran T (2022) Experimental and computational analysis of aluminum-coated dimple and plain tubes in solar water heater system. Energies 16(1):295

    Article  Google Scholar 

  14. Arun M, Barik D, Sridhar KP (2022) Experimental and CFD analysis of dimple tube parabolic trough solar collector (PTSC) with TiO2 nanofluids. J Therm Anal Calorim 8:1–8

    Google Scholar 

  15. Arun M, Barik D, Sridhar KP, Dennison MS (2022) Thermal performance of a dimpled tube parabolic trough solar collector (PTSC) with SiO2 nanofluid. Int J Photoenergy 28:2022

    Google Scholar 

  16. Arun M, Barik D, Sridhar KP, Vignesh G (2022) Performance analysis of solar water heater using Al 2 O 3 nanoparticle with plain-dimple tube design. Exp Tech 1–4

  17. Arun M, Barik D, Sridhar KP, Vignesh G (2021) Experimental and CFD analysis of artificial dimples surface roughness by using application of domestic solar water heater. In Intelligent Manufacturing and Energy Sustainability: Proceedings of ICIMES 2020 285–298. Springer Singapore.

  18. Arun M, Barik D, Sridhar KP, Vignesh G (2021) Experimental and CFD analysis of plain and dimples tube at application of solar water heater. Materials Today: Proceedings 1(42):804–809

    Google Scholar 

  19. Arun M, Barik D, Sridhar KP, Vignesh G (2021) Experimental and CFD analysis of copper plain and dimples tube at application of solar water heater. Materials Today: Proceedings 1(42):410–415

    Google Scholar 

  20. Hasan-nezhad H, Yazdani M, Jeddi M (2022) High- and low-velocity impact experiments on treated STF/3D glass fabrics, Thin-Walled Struct 171:108720. https://doi.org/10.1016/j.tws.2021.108720

  21. Bing Liu, Chengbin Du, Huaxia Deng, Yankai Fu, Fei Guo, Ling Song, Xinglong Gong (2022) Study on the shear thickening mechanism of multifunctional shear thickening gel and its energy dissipation under impact load. Polymer 247:124800. https://doi.org/10.1016/j.polymer.2022.124800

  22. Jeddi M, Yazdani M, Hasan-nezhad H (2021) Energy absorption characteristics of aluminum sandwich panels with Shear Thickening Fluid (STF) filled 3D fabric cores under dynamic loading conditions. Thin-Walled Struct 168:108254. https://doi.org/10.1016/j.tws.2021.108254

  23. Hasan-nezhad H, Yazdani M, Salami-Kalajahi M, Jeddi M (2020) Mechanical behavior of 3D GFRP composite with pure and treated shear thickening fluid matrix subject to quasi-static puncture and shear impact loading. J Compos Mater 54(26):3933–3948

    Article  CAS  Google Scholar 

  24. Zhang X, Li W, Gong X (2010)Thixotropy of MR shear-thickening fluids. Smart Mater Struct 19:125012

  25. Hasan-nezhad H, Yazdani M, Akbari A, Salami-Kalajahi M, Kalhori M-R (2022) Study the effects of PEG modification methods on the resistance of 3D E-glass woven-STF composites at quasi-static and low-velocity impact loads. J Mol Liq 362:119781

    Article  CAS  Google Scholar 

  26. Gürgen S, Li W, Kus¸ han MC (2016) The rheology of shear thickening fluids with various ceramic particle additives. Mater Des 104:312–9

  27. Hasanzadeh M, Mottaghitalab V, Babaei H, Rezaei M (2016) The influence of carbon nanotubes on quasi-static puncture resistance and yarn pull-out behavior of shear-thickening fluids (STFs) impregnated woven fabrics. Compos PartAppl Sci Manuf 88:263–271

    Article  CAS  Google Scholar 

  28. Petel OE, Ouellet S, Loiseau J, Frost DL, Higgins AJ (2015) A comparison of the ballistic performance of shear thickening fluids based on particle strength and volume fraction. Int J Impact Eng 85:83–96

    Article  Google Scholar 

  29. Tan VBC, Tay TE, Teo WK, Solids J (2005) Struct 42:1561–1576

    Google Scholar 

  30. Gómez-Merino AI, Jiménez-Galea JJ, Rubio-Hernández FJ, Arjona-Escudero JL, Santos-Ráez IM (2020) Heat transfer and rheological behavior of fumed silica nanofluids. Processes 8:1535. https://doi.org/10.3390/pr8121535

    Article  CAS  Google Scholar 

  31. Abdi Esmaeil, Ata Khabaz-Aghdam, Hosein Hasan-nezhad, Bashir Behjat EAS, Marques, Yongming Yang, da Silva LFM (2022) The effect of graphene and graphene oxide on defective single lap adhesively bonded joints. J Compos Mater 56(17):2665–2675

  32. Jiang WQ, Ye F, He QY, Gong XL, Feng JB, Lu L, Xuan SH (2014) J Colloid Interface Sci 413:8–16

    Article  CAS  PubMed  Google Scholar 

  33. Jiang T, Zukoski CF (2012) Macromolecules 45:9791–9803

    Article  CAS  Google Scholar 

  34. Raghavan SR, Khan SA (1997) J Colloid Interface Sci 185:57–67

    Article  CAS  PubMed  Google Scholar 

  35. Raghavan SR, Walls HJ, Khan SA (2000) Langmuir 16:7920–7930

    Article  CAS  Google Scholar 

  36. Kamibayashi M, Ogura H, Otsubo Y (2008) J Colloid Interface Sci 321:294–301

    Article  CAS  PubMed  Google Scholar 

  37. Gun’Ko VM, Mironyuk IF, Zarko VI, Voronin EF, Turov VV, Pakhlov EM, Goncharuk EV et al. (2005) Morphology and surface properties of fumed silicas. J Colloid Interface Sci 289(2):427–445

  38. Haris A, Lee HP, Tan VB (2018) An experimental study on shock wave mitigation capability of polyurea and shear thickening fluid-based suspension pads. Def Technol 14(1):12–18

    Article  Google Scholar 

  39. Chauhan RR, Dullens RPA, Velikov KP, Aarts DGAL (2017) Exploring concentration, surface area, and surface chemistry effects of colloidal aggregates on fat crystal networks. RSC Adv 7:28780–28787

    Article  CAS  Google Scholar 

  40. Aliabadian E, Sadeghi S, Kamkar M, Chen Z, Sundararaj U (2018) Rheology of fumed silica nanoparticles/partially hydrolyzed polyacrylamide aqueous solutions under small and large amplitude oscillatory shear deformations, J Rheol 62:1197-1216

  41. Kang TJ, Hong KH, Yoo MR (2010) Fiber Polym 11:719–724

    Article  CAS  Google Scholar 

  42. Bossis G, Brady JF (1989) J Chem Phys 91:1866–1874

    Article  CAS  Google Scholar 

  43. Suh YJ, Ullmann M, Friedlander SK, Park KY (2001) J Phys Chem B 105:11796–11799

    Article  CAS  Google Scholar 

  44. Khan SA, Zoeller NJ (1993) J Rheol 37:1225–1235

    Article  CAS  Google Scholar 

  45. Srinivasa R, Raghavan Walls HJ, Saad Khan* A (2000) Rheology of silica dispersions in organic liquids: new evidence for solvation forces dictated by hydrogen bonding, Langmuir 16:7920–7930

  46. Liu X-Q, Bao R-Y, Wu X-J, Yang W, Xie B-H, Yang M-B (2015) Temperature induced gelation transition of a fumed silica/PEG shear thickening fluid. RSC Adv 5:18367–18374. https://doi.org/10.1039/c4ra16261g

    Article  CAS  Google Scholar 

  47. Kyu H, Heun KS, Hyun AK, Jong LS (2002) Large amplitude oscillatory shear as a way to classify the complex fluids. J Nonnewton Fluid Mech 107:51–65

    Article  Google Scholar 

  48. Huang Qiang Gu, Mingyuan Sun Kang,  Yanping J (2002) Effect of pretreatment on rheological properties of silicon carbide aqueous suspension. Ceram Int 28: 747–754

  49. Shih W-H, Shih WY, Kim S-I, Liu J, Aksay IA (1990) Scaling behavior of the elastic properties of colloidal gels. Phys Rev A 42:4772

    Article  CAS  PubMed  Google Scholar 

  50. Richard Buscall P, Mills DA, Goodwin JW, Lawson DW (1988) Scaling behavior of the rheology of aggregate networks formed from colloidal particles. J Chem Soc Faraday Trans 1(84):4249–4260.

Download references

Author information

Authors and Affiliations

Authors

Contributions

Sajjad Astaraki: Preparing samples and testing, Methodology, writing – original draft, investigation. Ehsan Zamani: Supervision, writing – review & editing, project administration. Majid Moghadam: Conceptualization, validation. Mohammad Hossein Pol: Formal analysis, review. Hosein Hasannezhad: Review & editing.

Corresponding author

Correspondence to Ehsan Zamani.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astaraki, S., Zamani, E., Moghadam, M. et al. Investigating the effect of temperature, angular frequency, and strain on the rheological properties of shear thickening fluid (STF) with different weight fractions of fumed silica. Colloid Polym Sci 302, 1–11 (2024). https://doi.org/10.1007/s00396-023-05173-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-023-05173-3

Keywords

Navigation