Skip to main content

Advertisement

Log in

Influence of non-rubber components on film formation behavior of natural rubber latex

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Dipping product of natural rubber (NR) latex has superior comprehensive properties superior to those made from synthetic latex. Compared with synthetic latex, the component characteristics of NR show the existence of non-rubber components (NRC). In this paper, NRC, mainly proteins and phospholipids, are separately removed by enzyme treatment to study their effect on the film formation behavior of natural rubber latex. The changes of NR latex particles are in situ visualize by using freeze-drying SEM technology and AFM during the film formation process. The results demonstrate that contact, deformation, and coalescence of latex particles occur more readily after the removal of proteins and phospholipids. It shows that removing NRC can quicken NR film formation. However, the mechanical properties of the NR film decrease in the absence of NRC. Based on the research, a film formation mechanism for NR latex is proposed, which can provide a more insightful understanding toward the structure-property relationship of NR film.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tang CR, Yang M, Yu J, Hu SN, Huang HS (2016) The rubber tree genome reveals new insights into rubber production and species adaptation. Nat Plants 2:16073–16082

    CAS  PubMed  Google Scholar 

  2. Wegst UGK, Bai H, Saiz E, Tomsia AP, Ritchie RO (2015) Bioinspired structural materials. Nat Mater 14:23–36

    CAS  PubMed  Google Scholar 

  3. Liu H, Huang GS, Wei LY, Zeng J, Fu X, Huang C, Wu JR (2019) Inhomogeneous natural network promoting strain-induced crystallization: a mesoscale model of natural rubber. Chinese J Polym Sci 37:1142–1151

    CAS  Google Scholar 

  4. Tanaka Y (2001) Structural characterization of natural polyisoprenes: solve the mystery of natural rubber based on structural study. Rubber Chem Tech 74:355–375

    CAS  Google Scholar 

  5. Li DF, Li SH, Cui DM, Zhang XQ (2010) β-Diketiminato rare-earth metal complexes. Structures, catalysis, and active species for highlycis-1,4-selective polymerization of isoprene. Organometallics 29:2186–2193

    CAS  Google Scholar 

  6. Amnuaypornsri S, Sakdapipanich J, Tanaka Y (2009) Green strength of natural rubber: the origin of the stress-strain behavior of natural rubber. J Appl Polym Sci 111:2127–2133

    CAS  Google Scholar 

  7. Joanicot M, Wong K, Maquet J, Chevalier Y, Cabane B (1990) Ordering of latex particles during film formation. Colloid Polym Sci 81:175–183

    CAS  Google Scholar 

  8. Juhue JLD (1995) Film formation from dispersion of core-shell latex particles. Macromolecules 28:1306–1308

    CAS  Google Scholar 

  9. Chevalier Y, Pichot C, Graillat C, Joanicot M, Cabane B (1992) Film formation with latex particles. Colloid Polym Sci 270:806–821

    CAS  Google Scholar 

  10. Sakdapipanich JT, Nawamawat K, Kawahara S (2002) Characterization of the large and small rubber particles in fresh Hevea latex. Rubber Chem Technol 75:179–185

    CAS  Google Scholar 

  11. Manus S, Adun N, Sirirat K, Chakrit S, Jitladda S, Shigeyuki T (2018) Viscoelastic and mechanical properties of large- and small-particle natural rubber before and after vulcanization. Polym Test 70:127–134

    Google Scholar 

  12. Sriring M, Nimpaiboon A, Kumarn S, Takahara A, Sakdapipanich J (2019) Enhancing viscoelastic and mechanical performances of natural rubber through variation of large and small rubber particle combinations. Polym Test 81:106225

    Google Scholar 

  13. Xiang Q, Xia KC, Dai LJ, Kang GJ, Li Y, Nie ZY, Duan CF, Zeng RH (2012) Proteome analysis of the large and the small rubber particles of Hevea brasiliensis using 2D-DIGE. Plant Physiol Bioch 60:207–213

    CAS  Google Scholar 

  14. Oouchi M, Ukawa J, Ishii Y, Maeda H (2019) Structural analysis of the terminal groups in commercial hevea natural rubber by 2D-NMR with DOSY filters and multiple-wet methods using ultrahigh-field NMR. Biomacromolecules 20:1394–1400

    CAS  PubMed  Google Scholar 

  15. Tanaka Y, Tarachiwin L (2009) Recent advances in structural characterization of natural rubber. Rubber Chem Technol 82:283–314

    CAS  Google Scholar 

  16. Kosugi K, Kawahara S (2015) Natural rubber with nanomatrix of non-rubber components observed by focused ion beam-scanning electron microscopy. Colloid Polym Sci 293:135–141

    CAS  Google Scholar 

  17. Huang C, Huang G, Li S, Luo M, Liu H, Fu X, Qu W, Xie Z, Wu J (2018) Research on architectur and composition of natural network in natural rubber. Polymer 154:90–100

    CAS  Google Scholar 

  18. Chaikumpollert O, Yamamoto Y, Suchiva K, Kawahara S (2012) Protein-free natural rubber. Colloid Polym Sci 290:331–338

    CAS  Google Scholar 

  19. Sansatsadeeku J, Sakdapipanich J, Rojruthai P (2011) Characterization of associated proteins and phospholipids in natural rubber latex. J Biosci Bioeng 111:628–634

    Google Scholar 

  20. Chaikumpollert O, Yamamoto Y, Suchiva K, Nghia PT, Kawahara S (2012) Preparation and characterization of protein-free natural rubber. Polym Advan Technol 23:825–828

    CAS  Google Scholar 

  21. Wu J, Qu W, Huang G, Wang S, Liu H (2017) Super-resolution fluorescence imaging of spatial organization of proteins and lipids in natural rubber. Biomacromolecules 18:1705–1712

    CAS  PubMed  Google Scholar 

  22. Nawamawat K, Sakdapipanich JT, Ho CC, Ma Y, Song J, Vancso JG (2011) Surface nanostructure of Hevea brasiliensis natural rubber latex particles. Colloid Surface A 390:157–166

    CAS  Google Scholar 

  23. Rochette CN, Crassous JJ, Drechsler M, Gaboriaud F, Eloy M, B-d G, Duval JFL (2013) Shell structure of natural rubber particles: evidence of chemical stratification by electrokinetics and Cryo-TEM. Langmuir 29:14655–14665

    CAS  PubMed  Google Scholar 

  24. Toki S, Che J, Rong L, Hsiao BS, Amnuaypornsri S, Nimpaiboon A, Sakdapipanich J (2013) Entanglements and networks to strain-induced crystallization and stress-strain relations in natural rubber and synthetic polyisoprene at various temperatures. Macromolecules 46:5238–5248

    CAS  Google Scholar 

  25. Tarachiwin L, Sakdapipanich J, Ute K, Kitayama T, Bamba T, E-i F, Kobayashi A, Tanaka Y (2005) Structural characterization of α-terminal group of natural rubber. 1. Decomposition of branch-points by lipase and phosphatase treatments. Biomacromolecules 6:1851–1857

    CAS  PubMed  Google Scholar 

  26. Karino T, Ikeda Y, Yasuda Y, Kohjiya S, Shibayama M (2007) Nonuniformity in natural rubber as revealed by small-angle neutron scattering, small-angle X-ray scattering, and atomic force microscopy. Biomacromolecules 8:693–699

    CAS  PubMed  Google Scholar 

  27. Toki S, Burger C, Hsiao BS, Amnuaypornsri S, Sakdapipanich J, Tanaka Y (2008) Multi-scaled microstructures in natural rubber characterized by synchrotron X-ray scattering and optical microscopy. J Polym Sci Polym Phys 46:2456–2464

    CAS  Google Scholar 

  28. Liu J, Wu S, Tang Z, Lin T, Guo B, Huang G (2015) New evidence disclosed for networking in natural rubber by dielectric relaxation spectroscopy. Soft Matter 11:2290–2299

    CAS  PubMed  Google Scholar 

  29. Kawahara S, Kakubo T, Sakdapipanich JT, Isono Y, Tanaka Y (2000) Characterization of fatty acids linked to natural rubber-role of linked fatty acids on crystallization of the rubber. Polymer 41:7483–7488

    CAS  Google Scholar 

  30. Xie ZT, Luo MC, Huang C, Wei LY, Liu YH, Fu XM (2018) Effects of graphene oxide on the strain-induced crystallization and mechanical properties of natural rubber crosslinked by different vulcanization systems. Polymer 151:279–286

    CAS  Google Scholar 

  31. Chen LJ, Gou XH, Luo YF, Jia ZX, Bai J, Chen YJ, Jia DM (2018) Effect of novel supported vulcanizing agent on the interfacial interaction and strain-induced crystallization properties of natural rubber nanocomposites. Polymer 148:390–399

    CAS  Google Scholar 

  32. Zhou Y, Kosugi K, Yamamoto Y, Kawahara S (2016) Effect of nonrubber components on the mechanical properties of natural rubber. Polym Advan Technol 28:159–165

    Google Scholar 

  33. Chaikumpollert O, Yamamoto Y, Suchiva K, Kawahara S (2012) Mechanical properties and cross-linking structure of cross-linked natural rubber. Polym J 44:772–777

    CAS  Google Scholar 

  34. Amnuaypornsri S, Sakdapipanich J, Toki S, Hsiao BS, Ichikawa N, Tanaka Y (2008) Strain-induced crystallization of natural rubber: effect of proteins and phospholipids. Rubber Chem Technol 81:753–766

    CAS  Google Scholar 

  35. Pipattananukul N, Ariyawiriyanan W, Kawahara S (2014) Thermal behavior of vulcanized deproteinzed natural rubber nano-composites. Energy Procedia 56:634–640

    CAS  Google Scholar 

  36. Lee JTY, Chow KL (2012) SEM sample preparation for cells on 3D scaffolds by freeze-drying and HMDS. Scanning 34:12–25

    CAS  PubMed  Google Scholar 

  37. Ivan'Kova EM, Dobrovolskaya IP, Popryadukhin PV, Kryukov A, Yudin VE, Morganti P (2016) In-situ cryo-SEM investigation of porous structure formation of chitosan sponges. Polym Test 52:41–45

    CAS  Google Scholar 

  38. Bogner A, Thollet G, Basset D, Jouneau P-H, Gauthier C (2005) Wet STEM: a new development in environmental SEM for imaging nano-objects included in a liquid phase. Ultramicroscopy 104:290–301

    CAS  PubMed  Google Scholar 

  39. Pralhad T, Rajendrakumar K (2004) Study of freeze-dried quercetin-cyclodextrin binary systems by DSC, FT-IR, X-ray diffraction and SEM analysis. J Pharmaceut Biomed 34:333–339

    CAS  Google Scholar 

  40. Kim C, Beuve JS, Guilbert S, Bonfils F (2009) Study of chain branching in natural rubber using size-exclusion chromatography coupled with a multi-angle light scattering detector (SEC-MALS). Eur Polym J 45:2249–2259

    CAS  Google Scholar 

  41. Tarachiwin L, Sakdapipanich J, Ute K, Kitayama T, Tanaka Y (2005) Structural characterization of α-terminal group of natural rubber. 2. Decomposition of branch-points by phospholipase and chemical treatments. Biomacromolecules 6:1858–1863

    CAS  PubMed  Google Scholar 

  42. Sakdapipanich JT (2007) Structural characterization of natural rubber based on recent evidence from selective enzymatic treatments. J Biosci Bioeng 103:287–292

    CAS  PubMed  Google Scholar 

  43. Luo M-C, Zeng J, Fu X, Huang G, Wu J (2016) Toughening diene elastomers by strong hydrogen bond interactions. Polymer 106:21–28

    CAS  Google Scholar 

  44. Wei Y-C, Liu G-X, Zhang H-F, Zhao F, Luo M-C, Liao S (2019) Non-rubber components tuning mechanical properties of natural rubber from vulcanization kinetics. Polymer 183:121911–121917

    CAS  Google Scholar 

  45. Wei Y-C, Liu G-X, Zhang L, Xu W-Z, Liao S, Luo M-C (2020) Mimicking mechanical robustness of natural rubber based on sacrificial network constructed by phospholipids. ACS Appl Mater Interfaces 12:14468–14475

    CAS  PubMed  Google Scholar 

  46. Yu W-W, Xu W-Z, Xia J-H, Wei Y-C, Liao S, Luo M-C (2020) Toughening natural rubber by the innate sacrificial network. Polymer 194:122419–122425

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDC06010100), the Special Fund for Agro-scientific Research in the Public Interest (No. 201403066), and the Major Science and Technology Plan Projects of Hainan Province (No. ZDKJ2016020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuangquan Liao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, YC., Xia, JH., Zhang, L. et al. Influence of non-rubber components on film formation behavior of natural rubber latex. Colloid Polym Sci 298, 1263–1271 (2020). https://doi.org/10.1007/s00396-020-04703-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04703-7

Keywords

Navigation