Skip to main content
Log in

Numerical study of wetting stability and sliding behavior of liquid droplets on microgrooved surfaces

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

3D droplet models are developed to numerically investigate the droplet stability and hysteresis of the three-phase contact line on both horizontal and inclined microgrooved solid surfaces. A numerical method is applied to study the shapes and energies of liquid droplets, with a particular focus on the stability of the suspended wetting state. A normalized form of droplet energy is used to compare the relative stabilities of multiple metastable wetting states and a numerical approach is found to reliably predict the wetting stability of droplets on horizontal microgrooved substrates. For wetting on inclined surfaces, numerical simulations of sliding behavior of liquid droplets on flat and periodic microgrooved surfaces with a range of groove geometry are conducted. A numerical model capable of predicting the critical sliding angle of the drop from the knowledge of advancing and receding angles is developed. The effects of microgroove topography, droplet size, and inclination angle on the droplet dynamic behavior are analyzed. Droplet shape and critical sliding angle, obtained from the numerical models, are compared with those of experimental results and are found to be in very good agreement.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Choi CH, Lee H, Weitz DA (2018) Rapid patterning of PDMS microfluidic device wettability using syringe-vacuum-induced segmented flow in non-planar geometry. ACS Appl Mater Interfaces 10(4):3170–3174

    Article  CAS  PubMed  Google Scholar 

  2. Zhu L, Ge JR, Qi YY, Chen Q, Hua RM, Luo F, Chen PR (2018) Droplet impingement behavior analysis on the leaf surface of Shu-ChaZao under different pesticide formulations. Comput Electron Agric 144:16–25

    Article  Google Scholar 

  3. Liang Y, Ju J, Deng N, Zhou X, Yan J, Kang W, Cheng B (2018) Super-hydrophobic self-cleaning bead-like SiO2@ PTFE nanofiber membranes for waterproof-breathable applications. Appl Surf Sci 442:54–64

    Article  CAS  Google Scholar 

  4. Lv C, Hao P, Yao Z, Niu F (2015) Departure of condensation droplets on superhydrophobic surfaces. Langmuir 31(8):2414–2420

    Article  CAS  PubMed  Google Scholar 

  5. Rahman MA, Jacobi AM (2012). Study of the effects of microgroove geometry on frost structure and properties. International Refrigeration and Air Conditioning Conference at Purdue, West Lafayette, Indiana, USA, 2294

  6. Extrand CW (2004) Criteria for ultralyophobic surfaces. Langmuir 20(12):5013–5018

    Article  CAS  PubMed  Google Scholar 

  7. Farhat N, Alen SK, Rahman MA (2015) Numerical study of the wetting and mobility of liquid droplets on horizontal and inclined flat and microgrooved surfaces. Procedia Eng 105:576–585

    Article  CAS  Google Scholar 

  8. Callies M, Quéré D (2005) On water repellency. Soft Matter 1(1):55

    Article  CAS  Google Scholar 

  9. Rahman MA, Jacobi AM (2012) Wetting behavior and drainage of water droplets on microgrooved brass surfaces. Langmuir 28(37):13441–13451

    Article  CAS  PubMed  Google Scholar 

  10. Patankar NA (2003) On the modeling of hydrophobic contact angles on rough surfaces. Langmuir 19(4):1249–1253

    Article  CAS  Google Scholar 

  11. Cao L, Hu HH, Gao D (2007) Design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrophilic materials. Langmuir 23(8):4310–4314

    Article  CAS  PubMed  Google Scholar 

  12. Extrand CW (2002) Model for contact angles and hysteresis on rough and ultraphobic surfaces. Langmuir 18(21):7991–7999

    Article  CAS  Google Scholar 

  13. Rahman MA, Jacobi AM (2012) Drainage of frost melt water from vertical brass surfaces with parallel microgrooves. Int J Heat Mass Transf 55(5–6):1596–1605

    Article  CAS  Google Scholar 

  14. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  CAS  Google Scholar 

  15. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8):988–994

    Article  CAS  Google Scholar 

  16. Rahman MA, Goswami A (2017) Analysis of the energetics and stability of liquid droplets on textures surfaces with square micropillars. 13th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Portoroz, Slovenia

  17. Reyssat M, Yeomans JM, Quéré D (2007) Impalement of fakir drops. EPL 81(2):26006

    Article  CAS  Google Scholar 

  18. Kusumaatmaja H, Blow ML, Dupuis A, Yeomans JM (2008) The collapse transition on superhydrophobic surfaces. EPL 81(3):36003

    Article  CAS  Google Scholar 

  19. Bormashenko E (2015) Progress in understanding wetting transitions on rough surfaces. Adv Colloid Interf Sci 222:92–103

    Article  CAS  Google Scholar 

  20. Checco A, Ocko BM, Rahman A, Black CT, Tasinkevych M, Giacomello A, Dietrich S (2014) Collapse and reversibility of the superhydrophobic state on nanotextured surfaces. Phys Rev Lett 112(21):216101

    Article  CAS  Google Scholar 

  21. Nosonovsky M, Bhushan B (2007) Biomimetic superhydrophobic surfaces: multiscale approach. Nano Lett 7(9):2633–2637

    Article  CAS  PubMed  Google Scholar 

  22. Afferrante L, Carbone G (2010) Microstructured superhydrorepellent surfaces: effect of drop pressure on fakir-state stability and apparent contact angles. J Phys Condens Matter 22(32):325107

    Article  CAS  PubMed  Google Scholar 

  23. Barbieri L, Wagner E, Hoffmann P (2007) Water wetting transition parameters of perfluorinated substrates with periodically distributed flat-top microscale obstacles. Langmuir 23(4):1723–1734

    Article  CAS  PubMed  Google Scholar 

  24. Zheng QS, Yu Y, Zhao ZH (2005) Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces. Langmuir 21(26):12207–12212

    Article  CAS  PubMed  Google Scholar 

  25. Cai TM, Jia ZH, Yang HN, Wang G (2016) Investigation of Cassie-Wenzel wetting transitions on microstructured surfaces. Colloid Polym Sci 294(5):833–840

    Article  CAS  Google Scholar 

  26. Fang W, Guo H, Li B, Li Q, Feng X (2018) Revisiting the critical condition for the Cassie–Wenzel transition on micropillar-structured surfaces. Langmuir 34(13):3838–3844

    Article  CAS  PubMed  Google Scholar 

  27. Bhushan B, Jung YC (2011) Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog Mater Sci 56(1):1–108

    Article  CAS  Google Scholar 

  28. Dubov AL, Perez-Toralla K, Letailleur A, Barthel E, Teisseire J (2013) Superhydrophobic silica surfaces: fabrication and stability. J Micromech Microeng 23(12):125013

    Article  CAS  Google Scholar 

  29. He B, Patankar NA, Lee J (2003) Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces. Langmuir 19(12):4999–5003

    Article  CAS  Google Scholar 

  30. Dubov AL, Mourran A, Möller M, Vinogradova OI (2015) Regimes of wetting transitions on superhydrophobic textures conditioned by energy of receding contact lines. Appl Phys Lett 106(24):241601

    Article  CAS  Google Scholar 

  31. Bottiglione F, Di Mundo R, Soria L, Carbone G (2015) Wenzel to Cassie transition in superhydrophobic randomly rough surfaces. Nanosci Nanotechnol Lett 7(1):74–78

    Article  Google Scholar 

  32. Zhang X, Zhu W, He G, Zhang P, Zhang Z, Parkin IP (2016) Flexible and mechanically robust superhydrophobic silicone surfaces with stable Cassie–Baxter state. J Mater Chem A 4(37):14180–14186

    Article  CAS  Google Scholar 

  33. Long J, Pan L, Fan P, Gong D, Jiang D, Zhang H et al (2016) Cassie-state stability of metallic superhydrophobic surfaces with various micro/nanostructures produced by a femtosecond laser. Langmuir 32(4):1065–1072

    Article  CAS  PubMed  Google Scholar 

  34. Wang G, Jia ZH, Yang HN (2016) Stability of a water droplet on micropillared hydrophobic surfaces. Colloid Polym Sci 294(5):851–858

    Article  CAS  Google Scholar 

  35. Guo HY, Li B, Feng XQ (2016) Stability of Cassie-Baxter wetting states on microstructured surfaces. Phys Rev E 94(4):042801

    Article  PubMed  Google Scholar 

  36. Zu YQ, Yan YY (2016) Single droplet on micro square-post patterned surfaces-theoretical model and numerical simulation. Sci Rep 6:19281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pashos G, Kokkoris G, Papathanasiou AG, Boudouvis AG (2016) Wetting transitions on patterned surfaces with diffuse interaction potentials embedded in a Young-Laplace formulation. J Chem Phys 144(3):034105

    Article  CAS  PubMed  Google Scholar 

  38. Chen Y, He B, Lee J, Patankar NA (2005) Anisotropy in the wetting of rough surfaces. J Colloid Interface Sci 281(2):458–464

    Article  CAS  PubMed  Google Scholar 

  39. Gong W, Zu Y, Chen S, Yan Y (2017) Wetting transition energy curves for a droplet on a square-post patterned surface. Sci Bull 62(2):136–142

    Article  CAS  Google Scholar 

  40. Hao JH, Wang ZJ (2016) Modeling Cassie-Baxter state on superhydrophobic surfaces. J Dispers Sci Technol 37(8):1208–1213

    Article  CAS  Google Scholar 

  41. Zhang W, Zhang RR, Jiang CG, Wu CW (2017) Effect of pillar height on the wettability of micro-textured surface: volume-of-fluid simulations. Int J Adhes Adhes 74:64–69

    Article  CAS  Google Scholar 

  42. Chatain D, Lewis D, Baland JP, Carter WC (2006) Numerical analysis of the shapes and energies of droplets on micropatterned substrates. Langmuir 22(9):4237–4243

    Article  CAS  PubMed  Google Scholar 

  43. Promraksa A, Chuang YC, Chen LJ (2014) Study on the wetting transition of a liquid droplet sitting on a square-array cosine wave-like patterned surface. J Colloid Interface Sci 418:8–19

    Article  CAS  PubMed  Google Scholar 

  44. Goswami A, Rahman MA (2017) Numerical study of energetics and wetting stability of liquid droplets on microtextured surfaces. Colloid Polym Sci 295(10):1787–1796

    Article  CAS  Google Scholar 

  45. Semprebon C, Herrmann C, Liu B-Y, Seemann R, Brinkmann M (2018) Shape evolution of droplets growing on linear microgrooves. Langmuir 34(36):10498–10511

    Article  CAS  PubMed  Google Scholar 

  46. He L, Sui X, Liang W, Wang Z, Akbarzadeh A (2018) Numerical analysis of anisotropic wetting of chemically striped surfaces. RSC Adv 8(55):31735–31744

    Article  CAS  Google Scholar 

  47. Brakke KA (1992) The surface evolver. Exp Math 1(2):141–165

    Article  Google Scholar 

  48. Janardan N, Panchagnula MV (2014) Effect of the initial conditions on the onset of motion in sessile drops on tilted plates. Colloids Surf A Physicochem Eng Asp 456:238–245

    Article  CAS  Google Scholar 

  49. Semprebon C, Brinkmann M (2014) On the onset of motion of sliding drops. Soft Matter 10(18):3325–3334

    Article  CAS  PubMed  Google Scholar 

  50. Extrand CW, Kumagai Y (1995) Liquid drops on an inclined plane: the relation between contact angles, drop shape, and retentive force. J Colloid Interface Sci 170(2):515–521

    Article  CAS  Google Scholar 

  51. Gao N, Geyer F, Pilat DW, Wooh S, Vollmer D, Butt H-J, Berger R (2018) How drops start sliding over solid surfaces. Nat Phys 14:191–196

    Article  CAS  Google Scholar 

  52. Antonini C, Carmona FJ, Pierce E, Marengo M, Amirfazli A (2009) General methodology for evaluating the adhesion force of drops and bubbles on solid surfaces. Langmuir 25:6143–6154

  53. Santos MJ, White JA (2011) Theory and simulation of angular hysteresis on planar surfaces. Langmuir 27(24):14868–14875

    Article  CAS  PubMed  Google Scholar 

  54. Santos MJ, Velasco S, White JA (2012) Simulation analysis of contact angles and retention forces of liquid drops on inclined surfaces. Langmuir 28(32):11819–11826

    Article  CAS  PubMed  Google Scholar 

  55. Lv C, Yang C, Hao P, He F, Zheng Q (2010) Sliding of water droplets on microstructured hydrophobic surfaces. Langmuir 26(11):8704–8708

    Article  CAS  PubMed  Google Scholar 

  56. Qi B, Zhou J, Wei J, Li X (2018) Study on the wettability and condensation heat transfer of sine-shaped micro-grooved surfaces. Exp Thermal Fluid Sci 90:28–36

    Article  Google Scholar 

  57. ElSherbini AI, Jacobi AM (2004) Liquid drops on vertical and inclined surfaces: I. An experimental study of drop geometry. J Colloid Interface Sci 273(2):556–565

    Article  CAS  PubMed  Google Scholar 

  58. Bhutani G, Muralidhar K, Khandekar S (2013) Determination of apparent contact angle and shape of a static pendant drop on a physically textured inclined surface. Interfacial Phenom Heat Transf 1(1):29–49

    Article  Google Scholar 

  59. Dai X, Sun N, Nielsen SO, Stogin BB, Wang J, Yang S, Wong TS (2018) Hydrophilic directional slippery rough surfaces for water harvesting. Sci Adv 4(3):eaaq0919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xu B, Yuan Z, Wu Y (2014) Simulation analysis on surface morphology and hysteresis characteristics of molten Sn–3.0 Ag–0.5 Cu sitting on the inclined Ni substrate. Colloids Surf A Physicochem Eng Asp 441:217–225

    Article  CAS  Google Scholar 

  61. Qiao S, Li Q, Feng X (2018) Sliding friction and contact angle hysteresis of droplets on microhole-structured surfaces. Eur Phys J E 41(2):25

    Article  CAS  PubMed  Google Scholar 

  62. Qiao S, Li S, Li Q, Li B, Liu K, Feng X (2017) Friction of droplets sliding on microstructured superhydrophobic surfaces. Langmuir 33(47):13480–13489

    Article  CAS  PubMed  Google Scholar 

  63. Alen SK, Farhat N, Rahman MA (2016) Analytical modeling of wetting states and simulation of drop shape on microstructured surfaces. AIP Conf Proc 1754:050043

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Ashiqur Rahman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, A., Alen, S.K., Farhat, N. et al. Numerical study of wetting stability and sliding behavior of liquid droplets on microgrooved surfaces. Colloid Polym Sci 297, 989–1000 (2019). https://doi.org/10.1007/s00396-019-04527-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04527-0

Keywords

Navigation