Skip to main content
Log in

Investigation of Cassie-Wenzel Wetting transitions on microstructured surfaces

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Understanding the physical mechanism of wetting transitions is crucial for the design of highly stable superhydrophobic materials. Wetting transitions from Cassie state to Wenzel state on microstructured surfaces were investigated in this article. The pinning force τ was introduced to establish a new mechanical equilibrium, obtaining the model of critical pressure p c of Cassie-Wenzel wetting transition and the model was qualitatively verified by performing a series of experiments. Using the model of p c and experimental data, the pinning force τ on different microstructured surfaces was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3
Fig. 4
Fig. 5
Fig 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ren LQ, Wang SJ, Tian XM, Han ZW, Yan LN, Qiu ZM (2007) Non-smooth morphologies of typical plant leaf surfaces and their anti-adhesion effects. J Bionic Eng 4:33–40. doi:10.1016/S1672-6529(07)60010-9

    Article  CAS  Google Scholar 

  2. Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Zhu D (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14:1857–1860. doi:10.1002/adma.200290020

    Article  CAS  Google Scholar 

  3. Fürstner R, Barthlott W, Neinhuis C, Walzel P (2005) Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir 21:956–961. doi:10.1021/la0401011

    Article  Google Scholar 

  4. Bhushan B, Jung YC (2011) Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog Mater Sci 56:1–108. doi:10.1016/j.pmatsci.2010.04.003

    Article  CAS  Google Scholar 

  5. Kim P, Wong TS, Alvarenga J, Kreder MJ, Adorno-Martinez WE, Aizenberg J (2012) Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS Nano 6:6569–6577. doi:10.1021/nn302310q

    Article  CAS  Google Scholar 

  6. Tsukamoto K, Uchikoshi J, Goto S, Kawase T, Ajari N, Nagai T, Morita M (2010) Photoetching of silicon by N-fluoropyridinium Salt. Electrochem Solid-State Lett 13:D80–D82. doi:10.1149/1.3481770

    Article  CAS  Google Scholar 

  7. Zhao H, Park KC, Law KY (2012) Effect of surface texturing on superoleophobicity, contact angle hysteresis, and “robustness”. Langmuir 28:14925–14934. doi:10.1021/la302765t

    Article  CAS  Google Scholar 

  8. Teshima K, Sugimura H, Inoue Y, Takai O, Takano A (2005) Transparent ultra water-repellent poly (ethylene terephthalate) substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating. Appl Surf Sci 244:619–622. doi:10.1016/j.apsusc.2004.10.143

    Article  CAS  Google Scholar 

  9. Wang Y, Wang W, Zhong L, Wang J, Jiang Q, Guo X (2010) Super-hydrophobic surface on pure magnesium substrate by wet chemical method. Appl Surf Sci 256:3837–3840. doi:10.1016/j.apsusc.2010.01.037

    Article  CAS  Google Scholar 

  10. Bellanger H, Darmanin T, Taffin de Givenchy E, Guittard F (2014) Chemical and physical pathways for the preparation of superoleophobic surfaces and related wetting theories. Chem Rev 114:2694–2716. doi:10.1021/cr400169m

    Article  CAS  Google Scholar 

  11. Zhang X, Shi F, Niu J, Jiang Y, Wang Z (2008) Superhydrophobic surfaces: from structural control to functional application. J Mater Chem 18:621–633. doi:10.1039/B711226B

    Article  CAS  Google Scholar 

  12. Whyman G, Bormashenko E (2011) How to make the Cassie wetting state stable? Langmuir 27:8171–8176. doi:10.1021/la2011869

    Article  CAS  Google Scholar 

  13. Groten J, Rühe J (2013) Surfaces with combined microscale and nanoscale structures: a route to mechanically stable superhydrophobic surfaces? Langmuir 29:3765–3772. doi:10.1021/la304641q

    Article  CAS  Google Scholar 

  14. San-Miguel A, Behrens SH (2012) Influence of nanoscale particle roughness on the stability of Pickering emulsions. Langmuir 28:12038–12043. doi:10.1021/la302224v

    Article  CAS  Google Scholar 

  15. Varnik F, Gross M, Moradi N, Zikos G, Uhlmann P, Müller-Buschbaum P, Stamm M (2011) Stability and dynamics of droplets on patterned substrates: insights from experiments and lattice Boltzmann simulations. J Phys Condens Matter 23:184112. doi:10.1088/0953-8984/23/18/184112

    Article  CAS  Google Scholar 

  16. Lei W, Jia ZH, He JC, Cai TM, Wang G (2014) Vibration-induced Wenzel-Cassie wetting transition on microstructured hydrophobic surfaces. Appl Phys Lett 104:181601. doi:10.1063/1.4875586

    Article  Google Scholar 

  17. Lei W, Jia ZH, He JC, Cai TM (2014) Dynamic properties of vibrated drops on a superhydrophobic patterned surface. Appl Therm Eng 62:507–512. doi:10.1016/j.applthermaleng.2013.10.019

    Article  CAS  Google Scholar 

  18. Liu G, Craig VS (2010) Macroscopically flat and smooth superhydrophobic surfaces: heating induced wetting transitions up to the Leidenfrost temperature. Faraday Discuss 146:141–151. doi:10.1039/B924965F

    Article  CAS  Google Scholar 

  19. Liu G, Fu L, Rode AV, Craig VS (2011) Water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to-Cassie transition. Langmuir 27:2595–2600. doi:10.1021/la104669k

    Article  CAS  Google Scholar 

  20. Krupenkin TN, Taylor JA, Wang EN, Kolodner P, Hodes M, Salamon TR (2007) Reversible wetting-dewetting transitions on electrically tunable superhydrophobic nanostructured surfaces. Langmuir 23:9128–9133. doi:10.1021/la7008557

    Article  CAS  Google Scholar 

  21. Kumari N, Garimella SV (2011) Electrowetting-induced dewetting transitions on superhydrophobic surfaces. Langmuir 27:10342–10346. doi:10.1021/la2027412

    Article  CAS  Google Scholar 

  22. Cheng Z, Lai H, Zhang N, Sun K, Jiang L (2012) Magnetically induced reversible transition between Cassie and Wenzel states of superparamagnetic microdroplets on highly hydrophobic silicon surface. J Phys Chem C 116:18796–18802. doi:10.1021/jp304965j

    Article  CAS  Google Scholar 

  23. Zheng QS, Yu Y, Zhao ZH (2005) Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces. Langmuir 21:12207–12212. doi:10.1021/la052054y

    Article  CAS  Google Scholar 

  24. Patankar NA (2004) Transition between superhydrophobic states on rough surfaces. Langmuir 20:7097–7102. doi:10.1021/la049329e

    Article  CAS  Google Scholar 

  25. Ishino C, Okumura K, Quéré D (2004) Wetting transitions on rough surfaces. EPL (Europhysics Letters) 68:419. doi:10.1209/epl/i2004-10206-6

    Article  CAS  Google Scholar 

  26. Murakami D, Jinnai H, Takahara A (2014) Wetting transition from the Cassie–Baxter state to the Wenzel state on textured polymer surfaces. Langmuir 30:2061–2067. doi:10.1021/la4049067

    Article  CAS  Google Scholar 

  27. Ren W (2014) Wetting transition on patterned surfaces: transition states and energy barriers. Langmuir 30:2879–2885. doi:10.1021/la404518q

    Article  CAS  Google Scholar 

  28. Jung YC, Bhushan B (2007) Wetting transition of water droplets on superhydrophobic patterned surfaces. Scr Mater 57:1057–1060. doi:10.1016/j.scriptamat.2007.09.004

    Article  CAS  Google Scholar 

  29. Giacomello A, Meloni S, Chinappi M, Casciola CM (2012) Cassie–Baxter and Wenzel states on a nanostructured surface: phase diagram, metastabilities, and transition mechanism by atomistic free energy calculations. Langmuir 28:10764–10772. doi:10.1021/la3018453

    Article  CAS  Google Scholar 

  30. Bormashenko E, Musin A, Whyman G, Zinigrad M (2012) Wetting transitions and depinning of the triple line. Langmuir 28:3460–3464. doi:10.1021/la204424n

    Article  CAS  Google Scholar 

  31. Gao N, Yan Y (2009) Modeling superhydrophobic contact angles and wetting transition. J Bionic Eng 6:335–340. doi:10.1016/S1672-6529(08)60135-3

    Article  Google Scholar 

  32. Xu X, Vereecke G, Chen C, Pourtois G, Armini S, Verellen N, De Gendt S (2014) Capturing wetting states in nanopatterned silicon. ACS Nano 8:885–893. doi:10.1021/nn405621w

    Article  CAS  Google Scholar 

  33. Vogler EA (1998) Structure and reactivity of water at biomaterial surfaces. Adv Colloid Interf Sci 74:69–117. doi:10.1016/S0001-8686(97)00040-7

    Article  CAS  Google Scholar 

  34. Berg JM, Eriksson LT, Claesson PM, Borve KGN (1994) Three-component Langmuir-Blodgett films with a controllable degree of polarity. Langmuir 10:1225–1234. doi:10.1021/la00016a041

    Article  CAS  Google Scholar 

  35. Forsberg PS, Priest C, Brinkmann M, Sedev R, Ralston J (2009) Contact line pinning on microstructured surfaces for liquids in the Wenzel state. Langmuir 26:860–865. doi:10.1021/la902296d

    Article  Google Scholar 

  36. Fetzer R, Ralston J (2011) Exploring defect height and angle on asymmetric contact line pinning. J Phys Chem C 115:14907–14913. doi:10.1021/jp203581j

    Article  CAS  Google Scholar 

  37. Pilat DW, Papadopoulos P, Schaffel D, Vollmer D, Berger R, Butt HJ (2012) Dynamic measurement of the force required to move a liquid drop on a solid surface. Langmuir 28:16812–16820. doi:10.1021/la3041067

    Article  CAS  Google Scholar 

  38. Hong SJ, Chang FM, Chou TH, Chan SH, Sheng YJ, Tsao HK (2011) Anomalous contact angle hysteresis of a captive bubble: advancing contact line pinning. Langmuir 27:6890–6896. doi:10.1021/la2009418

    Article  CAS  Google Scholar 

  39. Wang FC, Wu HA (2013) Pinning and depinning mechanism of the contact line during evaporation of nano-droplets sessile on textured surfaces. Soft Matter 9:5703–5709. doi:10.1039/C3SM50530H

    Article  CAS  Google Scholar 

  40. Ahuja A, Taylor JA, Lifton V, Sidorenko AA, Salamon TR, Lobaton EJ, Krupenkin TN (2008) Nanonails: a simple geometrical approach to electrically tunable superlyophobic surfaces. Langmuir 24:9–14. doi:10.1021/la702327z

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China (Grant No. 51176123), Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20103120120006) and Shanghai Natural Science (Grant No. 11ZR1424800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-hai Jia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Tm., Jia, Zh., Yang, Hn. et al. Investigation of Cassie-Wenzel Wetting transitions on microstructured surfaces. Colloid Polym Sci 294, 833–840 (2016). https://doi.org/10.1007/s00396-016-3836-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3836-4

Keywords

Navigation