Skip to main content
Log in

Stability of a water droplet on micropillared hydrophobic surfaces

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The stability of a droplet was influenced by the geometric parameters of micropillared surface, e.g., the height and pitch, and their relationships. Here, the effect of varying height and pitch on the wetting state of patterned hydrophobic surfaces was investigated. For a gentle deposited Cassie-Baxter droplet, it will transit to the Wenzel state with the evaporation of the droplet. Two evaporation modes (constant contact angle (CCA) and constant contact radius (CCR)) were used to determine the critical height and pitch of micropillars; when pillar height was larger than the critical value and the pitch smaller than the other one, the droplet can remain in Cassie-Baxter state well with the evolution of the droplet evaporation and, instead, the droplet cannot keep a good stability and would be transited to Wenzel state. The trends were discussed based on experimental results and then a transition criterion was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Reyssat M, Richard D, Clanet C, Quéré D (2010) Dynamical superhydrophobicity. Faraday Discuss 146:19–33. doi:10.1039/C000410N

    Article  CAS  Google Scholar 

  2. Kako T, Nakajima A, Irie H, Kato Z, Uematsu K, Watanabe T, Hashimoto K (2004) Adhesion and sliding of wet snow on a super-hydrophobic surface with hydrophilic channels. J Mater Sci 39:547–555. doi:10.1023/B:JMSC.0000011510.92644.3f

    Article  CAS  Google Scholar 

  3. Fukuda K, Tokunaga J, Nobunaga T, Nakatani T, Iwasaki T, Kunitake Y (2000) Frictional drag reduction with air lubricant over a super-water-repellent surface. J Mar Sci Technol 5:123–130. doi:10.1007/s007730070009

    Article  Google Scholar 

  4. Pit R, Hervet H, Leger L (2000) Direct experimental evidence of slip in hexadecane: solid interfaces. Phys Rev Lett 85:980. doi:10.1103/PhysRevLett.85.980

    Article  CAS  Google Scholar 

  5. Rao AV, Kulkarni MM, Bhagat SD (2005) Transport of liquids using superhydrophobic aerogels. J Colloid Interface Sci 285:413–418. doi:10.1016/j.jcis.2004.11.033

    Article  CAS  Google Scholar 

  6. Tarwal NL, Patil PS (2010) Superhydrophobic and transparent ZnO thin films synthesized by spray pyrolysis technique. Appl Surf Sci 256:7451–7456. doi:10.1016/j.apsusc.2010.05.089

    Article  CAS  Google Scholar 

  7. Varanasi KK, Deng T, Smith JD, Hsu M, Bhate N (2010) Frost formation and ice adhesion on superhydrophobic surfaces. Appl Phys Lett 97:234102. doi:10.1063/1.3524513

    Article  Google Scholar 

  8. Mishchenko L, Hatton B, Bahadur V, Taylor JA, Krupenkin T, Aizenberg J (2010) Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano 4:7699–7707. doi:10.1021/nn102557p

    Article  CAS  Google Scholar 

  9. Sarshar MA, Swarctz C, Hunter S, Simpson J, Choi CH (2013) Effects of contact angle hysteresis on ice adhesion and growth on superhydrophobic surfaces under dynamic flow conditions. Colloid Polym Sci 291:427–435. doi:10.1007/s00396-012-2753-4

    Article  CAS  Google Scholar 

  10. Genzer J, Efimenko K (2006) Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling 22:339–360. doi:10.1080/08927010600980223

    Article  CAS  Google Scholar 

  11. Ressine A, Marko-Varga G, Laurell T (2007) Porous silicon protein microarray technology and ultra-/superhydrophobic states for improved bioanalytical readout. Biotechnol Annu Rev 13:149–200. doi:10.1016/S1387-2656(07)13007-6

    Article  CAS  Google Scholar 

  12. Choi CH, Kim CJC (2009) Droplet evaporation of pure water and protein solution on nanostructured superhydrophobic surfaces of varying heights. Langmuir 25:7561–7567. doi:10.1021/la803614h

    Article  CAS  Google Scholar 

  13. Liu Y, Choi CH (2013) Condensation-induced wetting state and contact angle hysteresis on superhydrophobic lotus leaves. Colloid Polym Sci 291:437–445. doi:10.1007/s00396-012-2751-6

    Article  CAS  Google Scholar 

  14. Betz AR, Jenkins J, Attinger D (2013) Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces. Int J Heat Mass Transf 57:733–741. doi:10.1016/j.ijheatmasstransfer.2012.10.080

    Article  CAS  Google Scholar 

  15. Bormashenko E (2011) Comment on water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to-Cassie transition. Langmuir 27:12769–12770. doi:10.1021/la203010d

    Article  CAS  Google Scholar 

  16. Cheng J, Vandadi A, Chen CL (2012) Condensation heat transfer on two-tier superhydrophobic surfaces. Appl Phys Lett 101:131909. doi:10.1063/1.4756800

    Article  Google Scholar 

  17. Rykaczewski K (2012) Microdroplet growth mechanism during water condensation on superhydrophobic surfaces. Langmuir 28:7720–7729. doi:10.1021/la301618h

    Article  CAS  Google Scholar 

  18. Samuel B, Zhao H, Law KY (2011) Study of wetting and adhesion interactions between water and various polymer and superhydrophobic surfaces. J Phys Chem C 115:14852–14861. doi:10.1021/jp2032466

    Article  CAS  Google Scholar 

  19. Adamson AW, Gast AP (1967) Physical chemistry of surfaces. 400–408

  20. Israelachvili JN (2011) Intermolecular and surface forces: revised third edition. Academic press

  21. Bhushan B (2005) Nanotribology and nanomechanics. Wear 259:1507–1531. doi:10.1016/j.wear.2005.01.010

    Article  CAS  Google Scholar 

  22. Forsberg P, Nikolajeff F, Karlsson M (2011) Cassie–Wenzel and Wenzel–Cassie transitions on immersed superhydrophobic surfaces under hydrostatic pressure. Soft Matter 7:104–109. doi:10.1039/C0SM00595A

    Article  CAS  Google Scholar 

  23. Noblin X, Buguin A, Brochard-Wyart F (2004) Vibrated sessile drops: transition between pinned and mobile contact line oscillations. Eur Phys J E: Soft Matter Biol Phys 14:395–404. doi:10.1140/epje/i2004-10021-5

    Article  CAS  Google Scholar 

  24. Bormashenko E, Pogreb R, Whyman G, Bormashenko Y, Erlich M (2007) Vibration-induced Cassie-Wenzel wetting transition on rough surfaces. Appl Phys Lett 90:201917. doi:10.1063/1.2738364

    Article  Google Scholar 

  25. Kim HY (2004) Drop fall-off from the vibrating ceiling. Phys Fluids 16:474–477. doi:10.1063/1.1637352 (1994-Present)

    Article  CAS  Google Scholar 

  26. Lei W, Jia ZH, He JC, Cai TM (2014) Dynamic properties of vibrated drops on a superhydrophobic patterned surface. Appl Therm Eng 62:507–512. doi:10.1016/j.applthermaleng.2013.10.019

    Article  CAS  Google Scholar 

  27. Lei W, Jia ZH, He JC, Cai TM, Wang G (2014) Vibration-induced Wenzel-Cassie wetting transition on microstructured hydrophobic surfaces. Appl Phys Lett 104:181601. doi:10.1063/1.4875586

    Article  Google Scholar 

  28. Manukyan G, Oh JM, Van Den Ende D, Lammertink RGH, Mugele F (2011) Electrical switching of wetting states on superhydrophobic surfaces: a route towards reversible Cassie-to-Wenzel transitions. Phys Rev Lett 106:014501. doi:10.1103/PhysRevLett.106.014501

    Article  CAS  Google Scholar 

  29. Luo C, Xiang M, Liu X, Wang H (2011) Transition from Cassie–Baxter to Wenzel states on microline-formed PDMS surfaces induced by evaporation or pressing of water droplets. Microfluid Nanofluid 10:831–842. doi:10.1007/s10404-010-0714-0

    Article  CAS  Google Scholar 

  30. Liu G, Fu L, Rode AV, Craig VS (2011) Water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to-Cassie transition. Langmuir 27:2595–2600. doi:10.1021/la104669k

    Article  CAS  Google Scholar 

  31. Whyman G, Bormashenko E (2011) How to make the Cassie wetting state stable? Langmuir 27:8171–8176. doi:10.1021/la2011869

    Article  CAS  Google Scholar 

  32. Ryan BJ, Poduska KM (2008) Roughness effects on contact angle measurements. Am J Phys 76:1074–1077. doi:10.1119/1.2952446

    Article  CAS  Google Scholar 

  33. Rowan SM, Newton MI, McHale G (1995) Evaporation of microdroplets and the wetting of solid surfaces. J Phys Chem 99:13268–13271. doi:10.1021/j100035a034

    Article  CAS  Google Scholar 

  34. Birdi KS, Vu DT, Winter A (1989) A study of the evaporation rates of small water drops placed on a solid surface. J Phys Chem 93:3702–3703. doi:10.1021/j100346a065

    Article  CAS  Google Scholar 

  35. Shin DH, Lee SH, Jung JY, Yoo JY (2009) Evaporating characteristics of sessile droplet on hydrophobic and hydrophilic surfaces. Microelectron Eng 86:1350–1353. doi:10.1016/j.mee.2009.01.026

    Article  CAS  Google Scholar 

  36. Nguyen TA, Nguyen AV, Hampton MA, Xu ZP, Huang L, Rudolph V (2012) Theoretical and experimental analysis of droplet evaporation on solid surfaces. Chem Eng Sci 69:522–529. doi:10.1016/j.ces.2011.11.009

    Article  CAS  Google Scholar 

  37. Anantharaju N, Panchagnula M, Neti S (2009) Evaporating drops on patterned surfaces: transition from pinned to moving triple line. J Colloid Interface Sci 337:176–182. doi:10.1016/j.jcis.2009.04.095

    Article  CAS  Google Scholar 

  38. Xu W, Leeladhar R, Kang YT, Choi CH (2013) Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces. Langmuir 29:6032–6041. doi:10.1021/la400452e

    Article  CAS  Google Scholar 

  39. Wenzel RN (1949) Surface roughness and contact angle. J Phys Chem 53:1466–1467. doi:10.1021/j150474a015

    Article  CAS  Google Scholar 

  40. Cassie ABD (1948) Contact angles. Discuss Faraday Soc 3:11–16. doi:10.1039/DF9480300011

    Article  Google Scholar 

  41. Ishino C, Okumura K (2006) Nucleation scenarios for wetting transition on textured surfaces: the effect of contact angle hysteresis. EPL (Europhys Lett) 76:464–470. doi:10.1209/epl/i2006-10288-0

    Article  CAS  Google Scholar 

  42. Adamson AW (1967) Physical chemistry of surfaces interscience. New York, 18–21

  43. Hunt J, Bhushan B (2011) Nanoscale biomimetics studies of Salvinia molesta for micropattern fabrication. J Colloid Interface Sci 363:187–192. doi:10.1016/j.jcis.2011.06.084

    Article  CAS  Google Scholar 

  44. Jung YC, Bhushan B (2007) Wetting transition of water droplets on superhydrophobic patterned surfaces. Scr Mater 57:1057–1060. doi:10.1016/j.scriptamat.2007.09.004

    Article  CAS  Google Scholar 

  45. Bormashenko E, Musin A, Whyman G, Zinigrad M (2012) Wetting transitions and depinning of the triple line. Langmuir 28:3460–3464. doi:10.1021/la204424n

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China (Grant No. 51176123), Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20103120120006) and Shanghai Natural Science (Grant No. 11ZR1424800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-hai Jia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Jia, Zh. & Yang, Hn. Stability of a water droplet on micropillared hydrophobic surfaces. Colloid Polym Sci 294, 851–858 (2016). https://doi.org/10.1007/s00396-016-3837-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3837-3

Keywords

Navigation